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FOREWORD

Nondestructive Evaluation Engineering has grown steadily for the past twenty years, going
through a transition phase from an art to a multi-disciplinary area of study in science and engi-
neering. An increased awareness of the benefits of NDE in safety and cost savings has come about
in industry, government and university. Over fifty universities offer graduate course work and
advanced thesis topics on subjects of NDE compared to just two key universities twenty years ago.
Expenditures in research, manufacturing quality control, and in in-service inspection have increased
rapidly over the past decade. The forecast for NDE utilization in the future is even stronger with
emphasis being directed towards on-line monitoring in manufacturing, and also on new inspection
techniques for such advanced materials as ceramics and composite materials.

Assembled in this symposium volume are contributions from the world’s leading experts on
some new directions in nondestructive evaluation. Finite element modeling possibilities of wave
propagation are reviewed for assistance in ultrasonic NDE. Aspects of mode conversion, neutron
diffraction NDE principles for advanced composites, and ceramic inspection guidelines from ultra-
sonics, micro-radiography, and tomography are covered. For composite materials, such topics as
ultrasonic velocity measurements for quantitative NDE, acoustographic NDE, current accept/reject
criteria, and ultrasonic imaging enhancement techniques are discussed. The concept of a feature
matrix based on anisotropic elasticity is introduced as a new consideration in ultrasonic NDE.
Surface wave considerations are outlined. In addition, a variety of physical models are presented
that will become useful in the near future in data collection methodology and analysis for advanced
materials. Wave reflection from a crack permeated diffusion bond and also from an adhesive bond
are included along with ultrasonic scattering analysis from intergranular stress corrosion cracking.
Elastic guided wave analysis is also presented along with displacement and stress distribution
analysis in a plate for improved sensitivity in NDE.

In summary, the new directions in the nondestructive evaluation of advanced materials are
illustrated quite well in this symposium volume. New concepts are being introduced on a regular
basis with an ever-increasing number of users and participants in the NDE research and devel-
opment community.

The editors would like to thank the contributors to this volume for their efforts in preparing this
excellent manuscript under the imposed time constraints. Special thanks go to Mrs. Jadwiga Pilarski
and Renee Erdman for their coordination efforts throughout the preparation for this symposium
and the bound volume.

Joseph L. Rose

Ampere A. Tseng

Department of Mechanical Engineering and Mechanics
Drexel University
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FINITE ELEMENT MODELING OF ULTRASONIC WAVE
PROPAGATION IN MATERIALS

W. Lord
Electrical Engineering Department
Colorado State University
Fort Collins, Colorado

R. Ludwig
Electrical Engineering Department
Worcester Polytechnic Institute
Worcester, Massachusetts

Z. You
Electrical Engineering Department
Colorado State University
Fort Collins, Colorado

ABSTRACT

Ultrasonic interrogation of advanced materials for
defects and the measurement of material properties is
hampered by the lack of a viable model capable of
predicting the realistic transducer signals arising from
complex ultrasound/material interactions.

This paper describes the application of a finite
element model to this problem and gives results showing
how the finite element code can be used to predict wave
propagation phenomena. Both isotropic and anisotropic
materials have been simulated this way and the results
clearly show the potential of this numerical model to aid
in the solution of forward and inverse problems
associated with the ultrasonic inspection of materials.

NOMENCLATURE
CL = compressional wave velocity, in/sec.
Cs = shear wave velocity, in/sec.
F = energy functional, ft-1b.
{F) = surface traction vector, lb/inz.
[K] = stiffness matrix, 1b/in2.
[M] = mass matrix, 1b.
u = displacement vector, in.
= acceleration, in/sec2
S = strain tensor
T = stress tensor, 1b/in2.
w(y) = weighting function, in.
t = time, sec.
A
z = unit vector in z-direction.
) = first variation, delta function.

v = del operator.
p = material density, 1b.
N = 21rfo = angular frequency, 1/sec.
6(y) = phase delay, sec.
b = traction, 1b/in2.
INTRODUCTION

All energy/defect interactions associated with the
nondestructive evaluation (NDE) of materials are
describable by some form of partial differential equation
(PDE). For example, electrostatic and magnetostatic
methods such as potential drop, magnetic particle,
magnetography and flux leakage NDE methods are governed
by elliptic equations of Laplace’s or Poisson's form; all
eddy current NDE methods including single frequency,
multi-frequency and pulsed techniques are governed by a
parabolic diffusion equation, and finally microwave and
ultrasonic methods of defect detection are governed by
hyperbolic wave equations.

This wide variety of inspection mechanisms (for the
sake of brevity not all have been included in this brief
introduction) which constitute the science of
nondestructive evaluation, together with their
corresponding mathematical description contribute to most
of the richness and challenge associated with the
modeling of NDE phenomena. This is particularly true
when one considers the host material properties which are
often nonlinear, NDE test geometries and realistic defect
shapes, all of which have to be incorporated into the
appropriate PDE solution algorithm. From an analytical
standpoint, the inclusion of such severe constraints in
the definition of either the forward problem (given an
input transducer signal and a specific defect shape, what
is the output transducer signal) or the inverse problem
(given the input and output transducer signals, what is
the shape and location of the material defect), leads to
the use of idealized sources, test geometries and defect
shapes, thus limiting the application range of any
derived results.



Fortunately, the urgent need to model NDE
energy/defect interactions has occurred at a time of
increasing computational capability associated with
modern computers, and the concomitant development of
powerful numerical PDE solution strategies such as finite
difference, boundary elements, and finite element
algorithms. The finite element technique has in fact
been applied sequentially over the past twenty years by
the author’s research group to the solution of the
elliptic, parabolic and, most recently, hyperbolic PDE’s
associated with electromagnetic and ultrasonic NDE forms.
Starting with the simplest of two dimensional (2-D)
elliptic, magnetostatic leakage field problems (Hwang and
Lord, 1975), the numerical code has subsequently been
extended to axisymmetric (Palanisamy and Lord, 1980a) and
three dimensional (3-D) geometries (Ida and Lord, 1983).
Similar development has taken place in the case of
parabolic eddy current NDE modeling as computer power has
steadily mounted over the years. Again, starting with
simple 2-D geometries (Palanisamy and Lord, 1980b), the
eddy current code has been extended to axisymmetric (Lord
and Palanisamy, 1981) and 3-D geometries (Ida and Lord,
1985), although it should be noted that for single
frequency eddy current NDE, the governing parabolic PDE
reduces to an elliptic form upon the substitution of jw
for d/dt. Pulsed eddy current methods have to date only
been studied for 2-D geometries (Allen and Lord, 1984)
because of the need for both space and time
discretization. The use of finite element analysis
techniques for modeling low frequency electromagnetic NDE
phenomena provides a unified approach to the subject
(Lord, 1983 and 1987), and shows how numerical code
cannot only be used for examining the physics of
field/specimen interactions (Lord, et al., 1983), but
also provides a useful design tool (Ida et al., 1983), an
experimental test rig (Ida et al., 1985) and a technique
for validating NDE' signal processing schemes (Udpa and
Lord, 1984).

In carrying out the 3-D eddy current NDE studies
(Ida and Lord, 1985), use had to be made of the vector
processing capabilities of modern supercomputers, and it
was realized that such computational power ought to allow
solution of the hyperbolic wave equations governing
ultrasonic NDE phenomena. Consequently, a simple 2-D
formulation was developed and applied to the study of
wave propagation and scattering in an aluminum block
(Ludwig and Lord, 1988a). This paper gives results of
additional finite element work extending the modeling to
wave interactions with tight cracks, anisotropic
materials and surface waves.

THEORETICAL CONSIDERATIONS

The initial application of finite element code to
the study of a magnetostatic leakage fields around
defects in ferromagnetic materials occurred at a time
when considerable disagreement existed in the scientific
community as to the relative merits of finite difference
and finite element methods of analysis (see, for example,
Silvester and Chari, 1970; Demerdash and Nehl, 1970). A
finite element formulation of the problem was choseh
because of the peculiar constraints associated with NDE
phenomena modeling, namely awkward defect shapes,
nonlinear material properties, complex boundary
conditions associated with practical test geometries and
the need to extend the modeling to three-dimensions. As
many of the first code applications involved tubing
geometries having symmetry about the tube axis, it was
possible to take advantage of an axisymmetric formulation
giving exact results directly comparable with
experimental measurements (Lord et al. 1983). 1In
addition, the modeling was aided by the fact that the
fields were well behaved, in the sense that they were
confined to a relatively small area around the excitation
source, and the probe excitation levels were so low that
initial permeability values could be used to characterize
the ferromagnetic material. These points are mentioned

in order to provide a contrast with the wave propagation
modeling problems associated with ultrasonic NDE.
Although finite difference formulations have been used to
study ultrasonic wave propagation (Harumi et al., 1973
and Bond, 1982) our experience with low frequency
electromagnetic NDE modeling led us to believe that a
finite element formulation could be developed, capable of
modeling 2-D linear and non-linear ultrasonic NDE
phenomena with possible extension to 3-D.

The finite element approach (Zienkiewicz, 1977;
Bathe, 1982), rather than solving the governing
hyperbolic PDE
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This is done over a discretized region of interest where
the nodal displacement values u are the unknowns and
specific shape functions relate the displacement values
at adjacent nodes. Introducing appropriate boundary
conditions and carrying out the minimization indicated in
equation (2) results in a matrix equation

[K] (u) + [M] (4) = (F) 3)
where the K and M matrices are related to the specific
finite element shape functions chosen and the material
properties expressed in terms of the shear and

longitudinal velocities CS and CL of equation (1). In

essence, equation (3) can be likened to a mass spring
system in which the collection of all elements into the
global matrix form represents the solid as an arrangement
of masses interconnected to one another by springs. With
an appropriate implicit time integration scheme, equation
(3) can be solved by direct matrix inversion at each time
step to yield unknown nodal displacements throughout the
solution region which satisfy the governing hyperbolic
equation (1). Code input requirements then relate to
mesh geometry (including transducer aperture) material
properties, boundary conditions and the digitized
transducer waveform. Lacking a full-blown finite element
representation of a piezoelectric transducer, the
modeling studies to date have made use of digitized
signals received from a through-transmission test on an
unflawed aluminum block functioning as a calibration
standard or, alternatively, the analytical approximation

w

f(t)=(l-cos3—°t)coswt for OStSB— (4)
o w,

where w, = 27rf0 and fo is the center frequency of the

transducer. Either the experimentally determined

transducer signal or the analytical function (4) can then
be used to denote a two-dimensional displacement vector

u(z,y,t) = §(z)w(y)f(t-0(y)) z (5)

which serves as the forcing function in the global matrix
equation (3). The function §(z) (see Figure 1) ensures
that the input displacement vector is only applied at the
surface (z=0) of the specimen. w(y) 1is a weighting
function which allows any desired amplitude distribution
of the applied transducer displacement over the finite
aperture in the y direction and #(y) allows the



transducer signal f(t) to be delayed over the transducer
aperture, thus simulating the beam sterring behavior of
an angle beam transducer (Ludwig et al., 1987). Unlike

the low frequency electromagnetic NDE finite element
code, advantage could not be taken of axisymmetry due to
the limited practical application of such a formulation,
consequently, care has had to be taken in validating the
code. Experimental observations mode with a 1 MHz
transducer in a through-transmission made on on aluminum
block (Ludwig and Lord, 1988b) show good qualitative
agreement with the corresponding finite element
predictions and confirm that the code inherently models
beam spread, mode conversion, and can accommodate pulsed
transducer signals as well as arbitrarily shaped defects.

Neglecting the third dimension in ultrasonic NDE
however, has considerably more significance than a
similar assumption concerning low frequency NDE methods,
and one should not expect experimental results from a 3-D
world to agree exactly with the predictions from a 2-D
model. For this reason additional comparison of the
finite element code has been made with the analytically
based Cagniard-deHoop formulation (Achenbach, 1973) for
an infinite line source acting on a half-space. Results
of this study (Ludwig et al, 1989) show excellent
qualitative and quantitative agreement and provided the
impetus needed for the study of anisotropic material
effects and surface wave phenomena described in the
following results section.

RESULTS

In order to illustrate the use of the finite
element code to study the physical nature of
ultrasound/material interactions, this paper considers
the cases of a) surface waves generated by a point force
source interacting with a tight surface breaking crack,
b) bulk waves generated by the same source interacting
with a tight interior crack, and c) waves from a finite
aperture transducer interacting with an anistropic
medium.

Surface Waves

Figure 1 shows the finite element code predictions
for the first case of point source waves interacting with
a surface breaking crack in an 8" x 4" (.2032 m x .1016m)
aluminum block. Only 1/8 of the total block area is
shown in the z-y plane and only the z displacements are
plotted. The point force has the form of equation (&)
and acts at t=0 at the center of the block on the z-x
plane. 1In Figure la) the longitudinal wave has reached
the 1/4" (.0064m) surface breaking tight crack and the
surface and shear waves can be seen approaching the
crack. At 10 microseconds (Figure 1lb) the longitudinal
wave is passing out of the viewing area, and the shear
and surface waves are now interacting with the crack and
being reflected by it. Figure lc) after 14 microseconds
shows the shear wave front past the crack, one component
of the surface wave being reflected back from the crack
and a second component propagating down the tight crack
into the aluminum block. Finally at t=16 microseconds in
Figure 1d) it can be seen that the tight crack has
launched a wave traveling at the shear velocity into the
aluminium block behind the original shear wave front.

Subsurface Crack

Figures 2a) through 2d) shows a similar
progression for sound waves from a point force source
interacting with the same tight crack (note that 1/2 the
block is shown in this figure) at the center of an
aluminum block. Longitudinal, shear, head and surface
wave components can clearly be identified at all four
time steps. Of particular interest is the reflected
longitudinal wave shown at its origin in Figure 2b) and

arriving at the front surface of the block in Figure 2d).
The circular waves shown emanating from the tight crack
in Figures 2c) and d) appear to be traveling at the shear
wave velocity.

Anisotropy

Figure 3 shows a sequence of time steps for wave
propagation in an anisotropic medium having the same
elastic constants as uranium. The longitudinal, shear
and surface waves can be seen emanating from a 1MHZ, 1/2"
(.0127m) aperture transducer and propagating through and
around the 4" x 4" (.1016m) block whose grain axis is
parallel to the direction of propagation (z-axis). For
the sake of brevity only the z displacements are shown.
Of particular note, in contrast to Figures 4 and 5, is
the focusing effect on the longitudinal wavefront of the
grain structure parallel to the direction of propagation.

Figures 4 and 5 respectively show the defocussing
and skewing effects of wave propagation perpendicular and
at angle of 45° to the grain orientation of the
orthorhombic material.

CONCLUSIONS

Modeling of energy/material interactions is a
crucial step in the understanding and development of
nondestructive evaluation techniques. Such models play a
significant role in our physical knowledge of the
phenomena as well as serving as useful design, simulation
and calibration tools. Because of the unique constraints
that practical NDE applications impose on the underlying
PDE types, numerical methods such as finite element
analysis are natural modeling choices particularly at a
Fime when the computational power of modern computers is
increasing rapidly. This paper discusses the development
of a 2-D finite element model which is capable of
predicting ultrasonic wave propagation modes in a variety
of practical situations of interest to the NDE community.
Although a full 3-D treatment will be needed in order to
complete the modeling procedures the growing availability
of parallel architecture computers such as the hypercube
and transputer bodes well for the future.
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OBSERVABLES DUE TO BEAM-TO-MODE CONVERSION OF
A HIGH FREQUENCY GAUSSIAN P-WAVE INPUT IN
AN ALUMINUM PLATE IN VACUUM

I. T. Lu and L. B. Felsen
Department of Electrical Engineering and Computer Science

J. M. Klosner
Department of Mechanical and Industrial Engineering

Polytechnic University
Farmingdale, New York

I. INTRODUCTION

Identification of flaws in solid or laminated materials
by ultrasound requires detailed knowledge of the excita-
tion, propagation, scattering and detection of high fre-
quency sound waves in the flawed environment. Based
on an understanding of these fundamental wave
phenomena, one may then attempt to construct an
analytical model, with an accompanying algorithm, so as
to parametrize the NDE problem in terms of "good
observables”. For example, a good parametrization for an
elongated debonding flaw, which reacts primarily to
tangential shear but not to compressional excitation,
would involve an input tuned to maximizing shear at the
flaw site, and a detector tuned to receiving the shear-
excited scattered fleld. For narrow band signals, beam-
type transducers and receivers can furnish the spatial
spectral resolution required to achieve such selectivity.
Within these perspectives, the present study is directed
toward clarifying the wave phenomena that accompany a
Gaussian beam input into a layered elastic environment
as exemplified (though the general multilayer theory has
been developed) by an aluminum plate in vacuum. The
Gaussian input has been chosen because a) Gaussians
are good models for smoothly tapered outputs from
actual transducers, and b) they can be used as discrete
basis elements on a (configuration)-(spatial
wavenumber) phase space lattice to model rigorously any
transducer output (1). The Gaussian input is analyzed
via the complex source point (CSP) method, by which
beam excitation solutions in any (here, the layered)
environment are obtained from line or point source exci-
tation solutions in that environment by assigning com-
plex values to the source coordinate location (2,3). This
avoids the need for spatial spectral decomposition of the
beam fleld, as is customary. Previous applications of the
CSP method, which requires careful study of the analytic
continuation to the complex source domain, have not
dealt with elastic layers. Some difficulties encountered in
this process are still under investigation, but in the appli-
cation here to a compressional (P) beam input, they are
de-emphasized and do not affect the validity of the
results.

Source-excited high frequency propagation in lay-
ered advanced materials can be analyzed by ray fleld
tracing, modal expansion and, most generally, by a self-
consistent hybrid ray-mode scheme (4). In the hybrid
combination, the rays and modes (or wavefronts and
resonances under transient conditions) are complemen-
tary in the sense that, via a bilateral equivalence, cumu-
lative effects in the one can be expressed as sparse
effects in the other. This can form the basis for a good
parametrization of wave propagation and scattering
processes in flawed layered configurations. The ray-mode
equivalence and the hybrid scheme have been formalized
in earlier publications (4, 5). Test calculations, especially
under transient excitation, have confirmed that these
wave types are indeed observed in the signal response
and therefore can be classified as good observables (8).

The CSP substitution extends these formulations to
beam excitation. Due to P-SV coupling at the plate
boundaries, an initially well collimated P beam becomes
diffuse and, after a few reflections, is no longer resolv-
able, therefore ceasing to be a good observable. The fleld
in the plate rapidly assumes more of a mode-like
behavior, with a special role assigned to those modes
whose constituent plane wave spectra line up closest with
those of the incident beam. Special attention is paid to
the transitional process, with emphasis on any discernible
features in the total flelds that could be employed to
parametrize flaw excitation and detection when these
flelds interact with a fault zone. This necessitates careful
examination of numerical data (developed here by the
CSP-extended mode formulation, with independent
checks via the beam tracing formulation), both in the
plate cross sections that would encompass a flaw, and
along the surface where the detectors would be placed.
Typical examples for near, intermediate and far zone
observations have been selected from extensive numeri-
cal tests, and are presented in the form of the compres-
sional and shear potentials, and the associated horizontal
and vertical displacements. Depending on such parame-
ters as beam width, incident beam angle, etc., discernible
features in the data are identifled, which could lead to a
good parametrization of a flawed environment sensitive
to horizontal shear.



In Section II, we summarize the hybrid ray-mode
method for a line forcing function exciting an elastic
plate, and then discuss in Section III how the response to
a beam input can be derived therefrom by the complex
source coordinate substitution. Certain difficulties are
noted in this context, some of which are still under
investigation. The numerical results in Section IV for
the beam-excited P and SV potentials, as well as the
corresponding stresses and displacements, are prefaced
by analytical estimates that anticipate conditions where
prominent wave phenomena can be well resolved and
therefore qualify as good observables in the desired
parametrization. These considerations are then tested on
the numerical data with a view toward interpreting what
is observed. The conclusions in Section V seek to relate
what has been done to the next phase that includes a
weak debonding flaw in an otherwise perfectly bonded
layered composite (7).

II. LINE SOURCE EXCITATION OF AN ELASTIC
PLATE

A. Formulation and Solution

An elastic plate with thickness a, characterized by
Lame constants A and g and by density p, is assumed to
be excited by a line source at x=x’, z=z' as shown in Fig.
1a. The flelds in this plate can be derived from two
potentials & and ¥ representing pressure and vertically
polarized shear waves with respective propagation speeds
v, = [(X +2u)/p]'/? and vi=[u/p]"/%. If the line source
excites only time-harmonic compressional (P) waves, the
relevant potential problems (with suppressed time
dependence exp(—iwt)) are defilned by the wave equa-
tions
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(b)

Elastic plate with thickness a, characterized by
wave velocities vy, vg and by density p.

(a) real source coordinates (x’,z') (P-wave
isotropic line source).

complex source coordinates (x',z') (P-
wave beam source). The beam parameter
b in Eq. (18) is related to the (1/e) beam
width w, at the waist by w,=(2b/k;)"/2
Also shown on this figure are the axes of
the incident and reflected P-beams
(dashed lines), and of the coupled SV-
beams (solid lines), and their relationship
to the cross sections in Fig. 2.

Fig. 1

(b)
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In terms of these potentials, the stress components on a
plane z = const., subject to free stress boundary condi-
tions at z = O and z = a, are

& &
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and the x and z displacements are
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A plane wave spectral representation of the poten-
tials can be obtained by applying a Fourier transform
along the x coordinate,

o0
V(k;z,z’):f V(x,x';z,2")exp[- ik(x—x’)]d(x—x’)
- 00

with the inverse
1 o]
V(x,x’,z,z’):;ﬂ_—f V(k;z,2')exp[ik(x—x')]dk  (4)
-0

where V and V are wave vectors in the conflguration and
spectral domains, respectively,

SHR

A systematic procedure of solving for the z-
dependent amplitudes corresponding to a given spectral
wavenumber k in the x-domain has been presented pre-
viously (8), and the relevant formulas are summarized

(5)

below. It is convenient to introduce the propagator
matrix
exp(ik,d) 0
E(d)= 0 exp(ikgd) (6)
the source vector
-1
2II€p
s=1 , (7)
and the reflection matrices at the upper and lower boun-
daries
pup_ | T Fle (8)
~ +Tp Ty
with Ty, {iJ} = {ps}, representing the reflection

coefficient into wave i due to an incident wave J,
T —[4%2 -
L op=Ts=[4k?k ke~ (£2- k%) %-AT Y, A =4K2K Kk +(£2- k?)2

Tpe=4(kd- k¥ kg Ay D= 4(k2- K)ke, AT (9)



In these equations, £, and kg are transverse
wavenumbers for the P- and SV-waves, respectively,

k=VkZ - K%, Kk=1kZ- k% Im(k,)>0 (10)

To explore the wave phenomena in broad general-
ity, it is necessary to decompose the Af%l spectral am pli-
tude vector into the four categories V0, 0= 1,2 3,14

(see Fig. 2),
a £ .
V(k,z,z’):EV(Q) (k;z,2") (11)
(=1
each of which can be expressed as,
\7(9)=Q_E(Q))—I.I(Q).S_’_A(Q) (11a)

where I is the identity matrix. The translation matrices
connecting the levels z and z’ are

E(a-z)TP-E(a-2) , (=1
E (z-2) L Q=2
0=V pmrvew 9=z O
E [~ (z-2)] v =4
and the reverberation matrices are
E(2)LVE(a)TPE(a-2), (1,9
E(Q)(k'z)= (11c)

E(a-2)T E(a)T VE (2), {=34

Finally, A(Q) represents vectors that remove the direct
ray where it does not exist in the respective category,

0 (=1,3

2D=)-U[-(z-2)]E (z-2") - S, (=2

~U(z-2)E [ (z-2)] - S,

U(z)=\1/2 z=0 (11d)

0 z<o.

As mentioned already, the derivation of these results
may be found in (8).

B. Alternative Representations

From the basic closed form solution in (11a), it is
possible to derive a variety of alternative representations
with different physical content. These alternatives, dis-
cussed in detail in (Z7), are likewise summarized here.
For convenience, the superscript "(” for the (™ category
is omitted in what follows.

1. Modal Expansion A representation in terms of
the x-guided normal modes V, in the plate is developed
by evaluating the spectral integral in (4) around the pole
singularities which deflne the modal resonances (eigen-
values) kp. The resonance equation for the modal poles
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Fig. 2 The four categories that order the propagation
process according to waves which are upgoing
or downgoing, respectively, with respect to the
source depth z’ and arrive at z from an

upward or downward direction.

k= kyp, m = 1, 2..., is given by
de(I-F) = {1-(exp[i(k, + £5)a])?}

- T g lexp(ikya) — exp(ikga)]® =0 (12)
which leads to the corresponding mode series
V=3V, (13)
m
with the modal coeflicients
V=i klll}’(lm[(k— Kp) V exp(ik(x-x"))] (13a)

Because of the stress-free boundary conditions at z = 0,
a, the mode spectrum is purely discrete.

2. Ray Expansion A representation in terms of gen-

eralized ray integrals V, results from expanding the reso-
nance producing matrix in a power series

(I-F)"'= 3 E"
n—o

and substituting into (11), (11a), and (4) to obtain

(14)

o0

00 ) ,

V=NVa Va=—— [ F2-T -8 gk (15)
n=0 2m - 00

The index n can be regarded as an ordering parameter
counting the number of generalized ray reverberations.

3. Hybrid Ray— Mode Representation A hybrid

form combining modes and generalized rays results from
partial series expansion of the resonance producing
matrix,

N-1

I-F)'=yLE™+(I-FE) 'E¥ (16)

n=0
which, upon substitution into (11) with (11a), yields a
finite sum of ray integrals and a remainder integral. The
remainder integral can be reduced by deforming the
integration path from the real axis in the complex k-
plane, whereon the integrand is highly oscillatory, into a
(steepest descent type) contour Cy Wwhereon the
integrand decays rapidly away from a central region.
Pole singularities intercepted during the path deforma-
tion furnish normal modes whose number is determined
umiquely by the ray index N and the location of the



deformed contour. The resulting hybrid ray-mode
representation has the form,
N-1
V=73 Vy+3 Vh+Ry (17)

n=0 m
where

RN=—21ﬂ_ Ja-F) VENT sk ¥)gk  (17a)
Cn

is the modified remainder with more favorable conver-
gence properties than the real-k remainder integral.

III. BEAM EXCITATION OF AN ELASTIC PLATE

To convert the wave flelds generated by the P-wave
isotropic line source treated in Section II (Fig. 1a) into
wave flelds corresponding to excitation by a P- wave
Gaussian beam source (Fig. 1b), we shall employ the
complex source point technique mentioned earlier. This
requires analytic continuation of all wavefleld expressions
from the real source coordinates (x’, z') to the complex
source coordinates

7' = 7' + ibsina (18)

where (x’,2') now locates the center of the beam waist, b
is a beam width parameter, and «o is the angle between
the beam axis and the positive x-axis (see Fig. 1b and
(2,3). While the analytic extension guarantees formally
that the resulting P and SV potentials satisfy the
appropriate wave equations and boundary conditions, the
validity of a particular wavefleld representation must be
verifled in each case; i.e., the representation obtained on
replacing (x’,2’) by (X', Z’) must remain convergent. It
turns out that various alternative representations require
different continuation strategies. These aspects have
been considered in (8), and salient features are summar-
ized below.

When the wavefleld representation is in the form of
a spectral integral over the spatial wavenumber Kk
corresponding to the x-coordinate as in (4) or (15), the
analytic extension can be carried out systematically by
contour deformation, if required for convergence (3).
For the multiply reflected beam integrals derived from
the generalized ray integrals in (15), convergence can be
stabilized by switching from the global (x, z) coordinates
to the local coordinates defined with respect to the axes
of the individual beams (see Fig. 3). This transformation
avoids problems arising from strongly oblique spectra
with respect to the beam axes, corresponding to nearly
horizontal beam propagation referred to a fixed x- coor-
dinate frame. It also de-emphasizes problems attributable
to boundary-reflection-induced P-SV coupling of evanes-
cent P spectra in the x-referred spectral interval
k, <k < k;, wherein the SV spectra are still

propagating (9).

The same spectral interval is troublesome when the
fleld representation is in the form of a series like the
normal mode or the hybrid ray-mode expansions in (13)
or (17), which are tied to the global (X, z) system. Con-
tour deformation is now not an immediately available
option, and direct complex source coordinate (x’, Z')
substitution may cause convergence problems due to
exponentially growing factors in the series elements gen-
erated by the evanescent spectra. Since these effects are
nonphysical because the source beam spectrum in the
interval kp<k<l(s is decaying, we have for the present
simply ignored the modes with modal eigenvalues
k,, >k, because their excitation strength by the P-wave
source is minimal. Numerical comparisons with flelds
computed by the beam tracking algorithm have
confirmed the wvalidity of this assumption. It may be

X' = x' 4+ ibcos a,
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noted that these difficulties are not encountered with an
SV beam input because the source spectrum then spans
the totality of propagating waves k<Ks.

¥ T~
- N

Local coordinates (&,n) deflned with respect
to the axes of the individual beams.
(€,7")= incident P-beam; (&7,n")=reflected
P-beam; (&J,n7J)= reflected SV-beam.

Fig. 3

IV. NUMERICAL RESULTS

Extensive numerical computations have been per-
formed to chart the evolution of the P-beam input as it
interacts successively with the plate boundaries and
undergoes P-SV coupling at each reflection. The results
have been generated by the analytically continued mode
series in (13), subject to the above-noted omission of
modes with eigenvalues km>kp. Spot checks performed
by the multiple reflected beam algorithm derived from
(15) by complex source coordinate substitution and sta-
bilized around the local beam coordinates have esta-
blished that this assumption is valid. The hybrid beam-
mode format corresponding to (17) has not yet been
implemented numerically but the results to be discussed
below strongly suggest that such a description is worthy
of consideration because the physical observables clearly
appear beam-like in certain parametric domains and
mode-like in others. It is possible to anticipate certain
distinctive features that are desirable for a good
parametrization by looking at the P and SV potentials
individually, interpreting these, and drawing possible
inferences therefrom for the physically observed hor-
izontal and vertical displacements in the plate cross sec-
tions and on the surfaces, which are generated by
interfering contributions from both wave species. These
considerations have been discussed in (7) and they have
guided the choice of examples to follow. The individual
potentials are informative for displacements when one is
dominant over the other. Except when noted otherwise,
the plate and beam parameters (see Fig. 1) used in the
examples are those listed in the caption for Fig. 4.

All numerical computations were performed on a
PC/AT compatible Everex 10 MHz System 1800, having
a fast 10 MHz 80287 math coprocessor. The potentials
were calculated by the normal mode expansion in (13);
for near zone observational domains covered by a work-
able number of beam reflections, they were also calcu-
lated by the beam series in (15). Both procedures have
been found to yield the same numerical values. In the
normal mode expansion, we have retained only those
modes (64 in this example) with kj <k, because the
incident P-beam couples very weakly to the troublesome
evanescent P spectra contained in modes kp >k, In all
cases, the normal mode expansion was used as the refer-
ence solution.

Results are shown for an incident P-beam with
beam-axis inclination a=31.4° and 71.8°. The axes of
the incident P-beam (dashed), the reflected P-beams
(dashed), and the converted SV-beams (solid) are indi-



