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Preface

Since its introduction in 1965, fuzzy set theory has found applications in a wide variety
of disciplines. Modeling and control of dynamic systems belong to the fields in which
fuzzy set techniques have received considerable attention, not only from the scientific
community but also from industry. Many systems are not amenable to conventional
modeling approaches due to the lack of precise, formal knowledge about the system,
due to strongly nonlinear behavior, due to the high degree of uncertainty, or due to
the time varying characteristics. Fuzzy modeling along with other related techniques
such as neural networks have been recognized as powerful tools which can facilitate
the effective development of models. One of the reasons for this is the capability of
fuzzy systems to integrate information from different sources, such as physical laws,
empirical models, or measurements and heuristics.

Fuzzy models can be seen as logical models which use “if-then” rules to establish
qualitative relationships among the variables in the model. Fuzzy sets serve as a smooth
interface between the qualitative variables involved in the rules and the numerical
data at the inputs and outputs of the model. The rule-based nature of fuzzy models
allows the use of information expressed in the form of natural language statements
and consequently makes the models transparent to interpretation and analysis. At the
computational level, fuzzy models can be regarded as flexible mathematical structures,
similar to neural networks, that can approximate a large class of complex nonlinear
systems to a desired degree of accuracy.

Recently, a great deal of research activity has focused on the development of
methods to build or update fuzzy models from numerical data. Most approaches are
based on neuro-fuzzy systems, which exploit the functional similarity between fuzzy
reasoning systems and neural networks. This “marriage” of fuzzy systems and neural
networks enables a more effective use of optimization techniques for building fuzzy
systems, especially with regard to their approximation accuracy. However, the aspects
related to the transparency and interpretation tend to receive considerably less attention.
Consequently, most neuro-fuzzy models can be regarded as black-box models which
provide little insight to help understand the underlying process.

The approach adopted in this book aims at the development of transparent rule-
based fuzzy models which can accurately predict the quantities of interest, and at the
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same time provide insight into the system that generated the data. Attention is paid
to the selection of appropriate model structures in terms of the dynamic properties,
as well as the internal structure of the fuzzy rules (linguistic, relational, or Takagi—
Sugeno type). From the system identification point of view, a fuzzy model is regarded
as a composition of local submodels. Fuzzy sets naturally provide smooth transitions
between the submodels, and enable the integration of various types of knowledge
within a common framework.

In order to automatically generate fuzzy models from measurements, a compre-
hensive methodology is developed. It employs fuzzy clustering techniques to partition
the available data into subsets characterized by a linear behavior. The relationships
between the presented identification method and linear regression are exploited, allow-
ing for the combination of fuzzy logic techniques with standard system identification
tools. Attention is paid to the aspects of accuracy and transparency of the obtained
fuzzy models.

Using the concepts of model-based predictive control and internal model control
with an inverted fuzzy model, the control design based on a fuzzy model of a nonlinear
dynamic process is addressed. To this end, methods which exactly invert specific
types of fuzzy models are presented. In the context of predictive control, branch-and-
bound optimization is applied. Attention is paid to algorithmic solutions of the control
problem, mainly with regard to real-time control aspects.

The orientation of the book is towards methodologies that in the author’s experience
proved to be practically useful. The presentation reflects theoretical and practical
issues in a balanced way, aiming at readership from the academic world and also
from industrial practice. Simulation examples are given throughout the text and three
selected real-world applications are presented in detail. In addition, an implementation

in a MATLAB toolbox of the techniques presented is described. This toolbox can be
obtained from the author.

ROBERT BABUSKA
DELFT, THE NETHERLANDS
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1 INTRODUCTION

This book addresses the modeling of complex, nonlinear, or partially unknown systems
by means of techniques based on fuzzy set theory and fuzzy logic. This approach,
termed fuzzy modeling, is shown to be able to cope with systems that pose problems to
conventional techniques, mainly due to nonlinearities and lack of precise knowledge
about these systems. Methods are described for the development of fuzzy models from
data, and for the design of control systems which make use of an available fuzzy model.
The presented framework allows for an effective use of heterogeneous information in
the form of numerical data, qualitative knowledge, heuristics and first-principle models
for the building, validation and analysis of models, and for the design of controllers.
The obtained model can be a part of a real-time control algorithm, or can serve for

analysis of the process, in order to gain better understanding, and to improve the
operation, monitoring and diagnosis.

1.1 Modeling and lIdentification of Complex Systems

Developing mathematical models of real systems is a central topic in many discip-
lines of engineering and science. Models can be used for simulations, analysis of the
system’s behavior, better understanding of the underlying mechanisms in the system,
design of new processes, and for controlling systems. The development of a math-
ematical model which adequately represents the reality is an important task. If the
model is not accurate enough, the subsequent steps of analysis, prediction, controller
synthesis, etc., cannot be successful. However, there is an obvious tradeoff between
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the necessary accuracy of the model and its complexity. Models should provide in-
formation at the most relevant level of precision (abstraction), suppressing unnecessary
details when appropriate. If the model is too simple, it cannot properly represent the
studied characteristics of the system and does not serve its purpose. However, the
model should not be too complex if it is to be practically useful.

In control engineering, modeling and identification are important steps in the design
of control, supervision and fault-detection systems. Modern production and manufac-
turing methods in industry, combined with the growing demands concerning product
lifetime, quality, flexibility in production, and safety, have increased the performance
requirements imposed on the control systems. Production is often characterized by
frequent changes in product throughput, product mix, operating points and operating
conditions. To satisfy the tight quality requirements, control systems must guarantee
high performance over a wide range of operating conditions. Under these conditions,
process modeling often becomes a major bottleneck for the application of advanced
model-based techniques. Many systems are not amenable to conventional modeling
approaches due to the lack of precise, formal knowledge about the system, strongly
nonlinear behavior, the high degree of uncertainty, time varying characteristics, etc.
Example of such systems can be found in the process industry, flexible manufacturing,
aerospace engineering, (bio)chemical engineering, but also in ecological, social or
financial domains.

1.2 Different Modeling Paradigms

Traditionally, modeling is seen as a conjunction of a thorough understanding of the
system'’s nature and behavior, and of a suitable mathematical treatment that leads to
a usable model. This approach is usually termed “white-box” (physical, mechanistic,
first-principle) modeling. However, the requirement for a good understanding of the
physical background of the problem at hand proves to be a severe limiting factor in
practice, when complex and poorly understood systems are considered. Difficulties
encountered in conventional white-box modeling can arise, for instance, from poor
understanding of the underlying phenomena, inaccurate values of various process
parameters, or from the complexity of the resulting model. A complete understanding
of the underlying mechanisms is virtually impossible for a majority of real systems.
However, gathering an acceptable degree of knowledge needed for physical modeling
may be a very difficult, time-consuming and expensive task. Even if the structure of the
model is determined, a major problem of obtaining accurate values for the parameters
remains. It is the task-of system identification to estimate the parameters from data
measured on the system. Identification methods are currently developed to a mature
level for linear systems only. Most real processes are, however, nonlinear and can be
approximated by linear models only locally.

A different approach assumes that the process under study can be approximated
by using some sufficiently general “black-box” structure used as a general function
approximator. The modeling problem then reduces to postulating an appropriate
structure of the approximator, in order to correctly capture the dynamics and the
nonlinearity of the system. In black-box modeling, the structure of the model is hardly
related to the structure of the real system. The identification problem consists of
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estimating the parameters in the model. If representative process data is available,
black-box models usually can be developed quite easily, without requiring process-
specific knowledge. A severe drawback of this approach is that the structure and
parameters of these models usually do not have any physical significance. Such
models cannot be used for analyzing the system’s behavior otherwise than by numerical
simulation, cannot be scaled up or down when moving from one process scale to
another, and therefore are less useful for industrial practice.

There is a range of modeling techniques that attempt to combine the advantages
of the white-box and black-box approaches, such that the knowrr parts of the system
are modeled using physical knowledge, and the unknown or less certain parts are
approximated in a black-box manner, using process data and black-box modeling
structures with suitable approximation properties. These methods are often denoted as
hybrid, semi-mechanistic or gray-box modeling.

A common drawback of most standard modeling approaches is that they cannot
make effective use of extra information, such as the knowledge and experience of
engineers and operators, which is often imprecise and qualitative in its nature. The
fact that humans are often able to manage complex tasks under significant uncertainty
has stimulated the search for alternative modeling and control paradigms. So-called
“intelligent” methodologies, which employ techniques motivated by biological systems
and human intelligence to develop models and controllers for dynamic systems, have
been introduced. These techniques explore alternative representation schemes, using,
for instance, natural language, rules, semantic networks or qualitative models, and
possess formal methods to incorporate extra relevant information. Fuzzy modeling
and control are typical examples of techniques that make use of human knowledge and
deductive processes. Artificial neural networks, on the other hand, realize learning and

adaptation capabilities by imitating the functioning of biological neural systems on a
simplified level.

1.3 Fuzzy Modeling

Systems can be represented by mathematical models of many different forms, such as
algebraic equations, differential equations, finite state machines, etc. The modeling
framework considered in this book is based on rule-based fuzzy models, which describe
relationships between variables by means of if-then rules, such as:

If the heating power is high then the temperature will increase fast.

These rules establish logical relations between the system’s variables by relating qual-
itative values of one variable (power is high) to qualitative values of another variable
(temperature will increase fast). The qualitative values typically have a clear linguistic
interpretation, such as in the above example, and are called linguistic terms (labels,
values). The concept of system modeling and analysis by means of linguistic variables
was introduced by Zadeh (1973), and it has developed considerably in recent years.
The meaning of the linguistic terms with regard to the input and output variables
which may be numerical (heating power, temperature) is defined by suitably chosen
fuzzy sets. In this sense, fuzzy sets, or more precisely, their membership functions,
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provide an interface between the input and output numerical variables and the linguistic
qualitative values in the rules.

The logical structure of the rules facilitates the understanding and analysis of the
model in a semi-qualitative manner, close to the way humans reason about the real
world. In a given context, the characterization of the values by linguistic terms may
be more appropriate than a precise numerical value. The deliberate overlap of the
membership functions ensures generalization for situations not completely captured
by the rules. In mathematical terms, the inference process in fuzzy models can be
regarded as an interpolation between the outcomes of the individual rules.

Fuzzy set approaches have several advantages over other “intelligent” modeling

techniques, such as neural networks (Haykin, 1994), CMAC (Albus, 1975), or radial
basis function networks (Chen, et al., 1991):

= Fuzzy models integrate the logical processing of information with attractive math-
ematical properties of general function approximators. Fuzzy models can be seen
as rule-based systems suitable for formalizing the knowledge of experts, and at
the same time they are flexible mathematical structures, which can represent com-
plex nonlinear mappings (Kosko, 1994; Wang, 1994; Zeng and Singh, 1995b). As
fuzzy modeling integrates numerical and symbolic processing into one common
framework, it is not restricted to areas requiring human expertise and knowledge.
Fuzzy models can also make effective use of data-driven learning algorithms and
can be combined with conventional regression techniques (Takagi and Sugeno,
1985; Wang, 1994; Lin, 1994).

m  The rule-based structure of fuzzy systems is useful in the analysis of fuzzy models
acquired from numerical data, since the obtained rules may reveal a useful qualit-
ative description of the system that generated the data. Such a description can be
confronted and possibly combined with the knowledge of experts, which helps in
understanding the system and validating the model at the same time.

m The use of linguistic qualitative terms in the rules can be regarded as a kind of
information quantization. Depending on the number of qualitative values considered
(the granularity), models at different levels of abstraction and accuracy can be
developed for a given system. Each of the models may serve a different purpose
(prediction, analysis, controller design, monitoring, etc.).

1.4 Fuzzy ldentification

The term fuzzy identification usually refers to techniques and algorithms for construct-
ing fuzzy models from data. Two main approaches to the integration of knowledge
and data in a fuzzy model can be distinguished:

1. The expert knowledge expressed in a verbal form is translated into a collection
of if—then rules. In this way, a certain model structure is created. Parameters in
this structure (membership functions, weights of the rules, etc.) can be fine-tuned
using input-output data. The particular tuning algorithms exploit the fact that at the
computational level, a fuzzy model can be seen as a layered structure (network),



