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I. INTRODUCTION

The discovery of penicillin was a landmark event in medicine and micro-
biology. With its aid, many dangerous infectious diseases became con-
trollable. The use of penicillin by the medical services of the US and UK
forces facilitated the recovery of many injured combatants during
World War II. For pharmaceutical companies, the success of penicillin
stimulated a search for further medically useful materials derived from
microorganisms. For example, the discovery of streptomycin opened a
new door to the treatment of tuberculosis (Schatz et al., 1944). Soon, a
Golden Age of Natural Products Drug Discovery was underway as further
antibiotics, antiviral and antitumor agents, immunosuppressants, and
other materials were obtained in ever increasing numbers from
microorganisms.

Penicillin, once a rare drug, difficult to isolate and produce, can now
be considered a typical “‘commodity chemical”—that is, a commercially
important pure chemical compound, that is bought and sold in large
amounts in a competitive market. The capacity to produce large
amounts of penicillin, beginning six decades ago, was a turning point
in the history of the fermentation industry. The commercial production
of penicillin was made possible by extensive new developments in
the very large-scale growth of microorganisms. These developments
have rightly formed the centerpiece of many studies in the history
of what has come to be called “biochemical engineering,” a term
sometimes subsumed into the wider, “biotechnology.” Indeed,
penicillin has been termed ““A Paradigm for Biotechnology”” (Mateles,
1998).

The drama of the penicillin story tends to overshadow the preceding
decades of development in industrial microbiology. In this essay, we look
backwards at commodity chemical production by microorganisms before
the 1940s. We make no attempt to be comprehensive. Essentially, this is an
eclectic essay highlighting features that we feel are of special interest and
significance or that have otherwise been overlooked. Our main focus is on
organic acids, solvents, and penicillin. The production of amino acids,
polysaccharides, vitamins, enzymes, and other commodity chemicals by
fermentation is not discussed here, as many reviews on this topic are
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available (Bruins et al., 2001; Demain, 2000, 2006; El-Mansi et al., 2006;
Headon and Walsh, 1994; Lynd et al., 1999; Macauley et al., 2001;
Magnuson and Lasure, 2004; Saha, 2003).

The progression from a concept—that penicillin might be a useful
therapeutic agent—to its production as a pure, usable drug reliably man-
ufactured on a very large scale, occurred in a period of only a few years,
roughly from 1940 to 1947. It was a massive, multidisciplinary undertak-
ing, involving biochemists, biologists, chemists, chemical engineers, clin-
ical microbiologists, and microbiologists, with overall administration and
much financial support from pharmaceutical companies and the govern-
ments of the United States and United Kingdom. In 1947, 13 USA manu-
facturers made 510,000 pounds (about 2.3 x 10° kg) of penicillin at a bulk
price of $3,800 per 10° Oxford units ($5.67 per kg). Two decades later, the
number of American manufacturers decreased to five, while the annual
production increased to 1,749,000 pounds (about 7.9 x 10° kg) and the cost
decreased to $21.75 per 10” Oxford units ($0.03 per kg) (Mateles, 1998). By
the beginning of the 21st century, the total annual world market for
B-lactam antibiotics (penicillins, cephalosporins) was about $15 billion
(Elander, 2003).

Before the discovery of penicillin, organic chemistry had dominated the
pharmaceutical industry. Indeed, many distinguished scientists believed
that an economically feasible chemical synthesis of penicillin would replace
the use of living microbial cultures. This option was extensively pursued, in
secret, both in the United Kingdom and the United States, roughly from
1943 to 1946. However, as noted by the distinguished chemist, R. B. Wood-
ward, in his 1965 Nobel Prize lecture, . . . despite the best efforts of proba-
bly the largest number of chemists ever concentrated upon a single objective
the synthetic problem had not been solved when the program was brought
to a close at the end of the War”” (Woodward, 1972).

The search for a chemical synthesis was largely abandoned because it
became apparent that not only were microorganisms capable of produc-
ing an astonishing array of useful bioactive natural products, but that the
traditions of fermentation biology could be refined to meet new standards
of reliability and scale. For microbiologists, whose jobs had been concen-
trated in hospitals and public health laboratories, the era opened lucrative
new avenues of employment and required new modes of professional
organization. The Society for Industrial Microbiology was founded in
1949 to provide a professional forum for the new breed of microbiologist.
Like all economic and scientific revolutions, however, there were many
contributing forces that led to the ascendancy of industrial fermentation;
it is important to remember how much industrial scale fermentation had
been conducted before penicillin was known. Coming back to the present,
it is interesting to note a renaissance of natural products as drug can-
didates, perhaps by use of combinatorial chemistry or biochemistry
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(Bentley and Bennett, 1999) and diversity-oriented chemical synthesis
(Paterson and Anderson, 2005).

Il. WHAT IS FERMENTATION? WHAT IS A
FERMENTATION INDUSTRY?

The word, ferment, a substantive and also a verb, is derived ultimately
from Latin, fermentum, root of ferv-ére, which means ““to boil,” and was
used to describe leaven or yeast that showed a boiling action. The noun
form was used in alchemy and acquired other meanings such as agitation
and excitement; the verb form was also used in metallurgy and chemistry.
Samuel Johnson in his famous Dictionary quotes Boyle’s work, which
states that fermentation is A slow motion of the intestine particles of a
mixt body, arising usually from the operation of some active acid matter,
which rarifies, exalts, and subtilizes the soft and sulphureous particles; as
when leaven or yest rarifies, lightens, and ferments bread or wort.”
(Johnson, 1755, abridged 1843). The Oxford English Dictionary defines
fermentation as a process “‘of the nature of that resulting from the operation
of leaven on dough or on saccharine liquids.”

As the biochemical processes by which yeast produced ethanol and
CO; from carbohydrates were explored, this activity was referred to as
fermentation, presumably an extension of the use of fermentation to
describe the manufacture of beer and wines. Similarly, the formation of
other materials, such as lactic acid, by microorganisms was also described as
fermentation and qualifying adjectives were used—alcoholic fermentation,
lactic fermentation, and so on.

The study of fermentation in the 19th century was long and complex,
with Louis Pasteur as a major participant. In 1861, he described the
transformation of sugar, mannitol, and lactic acid to butyric acid as due
to a “butyric ferment” that was further described as a motile “infusorian.”
Remarkably, these infusoria not only lived in the absence of air, they died
in its presence (Pasteur, 1861). Pasteur said this was “the first known
example of animal ferments, and also of animals living without free oxygen
gas.”” He soon named the infusoria as Vibrion butyrigue (sic) (Pasteur, 1861)
but in 1880 this bacterium was renamed as Clostridium butyricum by Adam
Prazmowski. As further processes not requiring oxygen gas were recog-
nized, Pasteur coined the words ““aérobie”” and ““anaérobie” to designate
life in the presence and absence of oxygen, respectively.

Pasteur is often credited with the aphoristic phrase, “Fermentation is
life without air” (Vallery-Radot, 1960, p. 220) apparently from his famous
publication, “Etudes sur la Biére” (Pasteur, 1876): ““En résumé, la fermen-
tation est un phénomeéne trés-général. C’est la vie sans air, c’est la vie sans
gaz oxygene libre....” In translation, “fermentation is a very general
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phenomenon. It is life without air, it is life without free oxygen gas....”
This lengthy sentence, hardly aphoristic, continues with another 50 words
of Pasteurian majesty before coming to an end.

Not everyone accepted Pasteur’s view; the scientific debate was long
and vituperative. Dubos, one of Pasteur’s more eloquent biographers, has
this commentary: ““because Pasteur was convinced that fermentation
could be more profitably considered as a function of life than as a chemi-
cal reaction, and because his opponents refused to meet him on this
ground for reasons of scientific philosophy, there arose a battle of words
in which many of the most vigorous minds of the nineteenth century took
part’”” (Dubos, 1950).

The distinguished physiologist, Claude Bernard, became interested in
fermentation late in life. Bernard stated that fermentation “se fait sans
fixation d’oxygene” (proceeds without fixation of oxygen) (d’Arsonval,
1937), and came to believe that alcoholic fermentation did not require a
living cell. His evidence for this was not straightforward nor did he publish
it. However, after Bernard’s death in 1878, various notes, thoughts, and
unpublished data were found by d’Arsonval. To Pasteur’s distress they
were published by M. Berthelot (a rival who doubted Pasteur’s conclu-
sions) under the title, “La Fermentation Alcoolique. Dernieres Expériences
de Claude Bernard” (Berthelot, 1878). The final section of this paper
referred directly to Pasteur’s theory and was titled ““Théorie de la Fermen-
tation Alcoolique.” He listed five objections and stated that the theory was
destroyed. The first objection was as follows: ““Ce n’est pas la vie sans air;
car a I’air comme a 1’abri de son contact, ’alcool se forme sans levure.” (It is
not life without air, as, in contact with air or not, alcohol is formed without
yeast). Needless to say, the evercombative Pasteur vigorously attacked
both Berthelot and Bernard in the Académie des Sciences. Given that
Bernard was dead, it was a weird polemic, ““in which one of the main
protagonists was in the grave and appeared only in the form of a few
posthumous notes”” (Dubos, 1950).

Pasteur quickly demonstrated that Bernard’s experimental techniques
were deficient. Bernard had claimed, for example, that although fermen-
tation occurred in the juice of crushed grapes, he could not find evidence
for the presence of yeast. Bernard concluded that yeast was a consequence
of, and not the originator, of fermentation. Looking back with hindsight
and generosity one can conclude that Bernard had, perhaps, to some
extent foreseen that the conversion of sugar to alcohol could, in fact, be
accomplished by a collection of ferments (enzymes) even in the absence
of living yeast. This concept was finally verified by Buchner’s famous
discovery of “zymase” in 1897 (Cornish-Bowden, 1997).

Pasteur had investigated the manufacture of vinegar; in the process, he
identified a microorganism, ““Mycoderma aceti,” as the causative agent and
thereby showed that the process was aerobic. In a lecture before the Mayor
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and President of the Chamber of Commerce at Orleans, November 11, 1864,
he was recorded as follows: ““The Mayor and the President of the Chamber
of Commerce having heard that I had studied the fermentation which
produces vinegar have asked me to lay before the vinegar makers of this
town the results of my work” (Vallery-Radot, 1960, p. 148). It appears,
therefore, that Pasteur’s view of fermentation encompassed an aerobic
transformation carried out by a microorganism. This wider meaning of
fermentation as almost any microbial transformation under either aerobic
or anaerobic conditions persisted in Pasteur’s lifetime and to the currentera,
existing side by side with the more narrow, ‘‘microbial transformation of
substrates under anaerobic conditions.”

Nowadays in industrial microbiology, the term fermentation is used in
a broad way to describe all processes that are carried out in large tanks
similar to those used in ethanol fermentations. Writing in his classic text,
“Chemical Activities of Fungi” in 1949, the distinguished mycologist,
Jackson Foster, noted that he used “fermentation,” in the colloquial
sense, ‘meaning the formation of some product by a microbiological
process.” He added, however, that the formation of citric acid by fungi
was ““an oxidation, not a fermentation, in the Pasteurian or scientific
sense’’ (Foster, 1949).

In contemporary technical dictionaries, both meanings are attached
to fermentation. One meaning emphasizes the anaerobic breakdown of
glucose to lactate or ethanol while the second more broadly encompasses
“the use of microorganisms or cultured cells to produce useful materials,
such as antibiotics, beverages, enzymes, and some commodity chemicals”
(Smith et al., 2000). In describing the early application of microbes to the
production of commodity chemicals, we will use the big-tent definition.

Ill. WHEN DID THE PRODUCTION OF COMMODITY
CHEMICALS BY MICROORGANISMS BEGIN ?

The rapid development of penicillin as a commodity chemical produced
by microbial fermentation owed its success to two great traditions in
applied microbiology. The older tradition is the application of microor-
ganisms since antiquity for the production and preservation of food and
fluids (e.g., bread, cheese, sauerkraut, vinegar, yogurt, beer, cider,
kumiss, saké, wine). The pleasures afforded by the various fermented
foods and beverages are due not only to the inebrietory potential of the
alcoholic beverages but also to the fact that they are complex and savory
mixtures of many components. Clearly, a 50% solution of absolute ethanol
in distilled water would never substitute for a single malt scotch whisky!
Food and beverage fermentations are usually produced by empirical
operations. However, two of the ancient technologies forming complex



