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Preface

This book is intended primarily for students of materials science and related fields
who want to acquire a fundamental understanding of the atomic arrangements in
amorphous solids. A concomitant aim of the book is to provide an appropriate
and consistent methodology and vocabulary for describing the atomic structure
of amorphous solids.

The book may also be of interest to theoreticians, for this is a relatively new field
of science, open to further evolution and requiring formal proofs of some of the
concepts contained herein.

The first three chapters of this book focus mainly on the atomic arrangements in
amorphous solids based on the ideal amorphous solid model used as geometrical
foundation. Amorphous polymers and inorganic glasses have the most complex
atomic arrangements whereas metallic glasses can be considered as being the sim-
plest model of atomic arrangements in amorphous solids.

The twentieth-century may be called by science historians as the Renaissance
of Materials Science because many new analytical methods were invented to
discover and to ascertain the atomic arrangements in solids (for example, ranging
from X-ray diffraction to high resolution transmission electron microscopy),
thereby opening up the new science of structure—property relationships. Some
of these relationships are described in this book.

The fourth chapter places the mechanical behaviour of amorphous materials in
the general context of the mechanics of solids. In many instances, solutions from
continuum mechanics of isotropic materials can be applied directly to homoge-
neous amorphous solids, as they are theoretically isotropic. The chapter presents
these solutions in the light of mechanical behaviour of polycrystalline solids.

A good book should contain all the information that the reader is looking for, or
at least it should point accurately to other sources where the information can be
found. I believe this book has a coherent structure that conveys an important mes-
sage about the distinction between ideal amorphous solid, ideal crystalline solids
and that of real amorphous materials with the inevitable characteristic defects and
imperfections in their atomic arrangements.

Many of my colleagues and friends have influenced my decision to write this
book. In the first place, I wish to thank Professors Qinghua Qin, Richard Wel-
berry and Witold Brostow for their encouragement. I am grateful to Professors

AF i FHHE R Wiley AT AEHR, B Wiley AR FTHEN TAHMR, wH+i
FBAFRAFENTEREREMTEZ AL K3 o,

xi
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Jun Shen and Gang Wang who introduced me to the field of glassy metals, and
Professors Kevin Kendall and Christian Kloc for their constant support. I wish to
extend special thanks to Dr. Xiao Hua Tan for comments on the manuscript.

September 2014 Canberra
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Spheres, Clusters and Packing of Spheres

1.1
Introduction

Imagine, Design, Create, Explore

Theory of amorphousness is a science about the structural arrangement of atoms
in amorphous solids. It is part of Materials Science, which includes the closely
related theory of crystallography. Whilst theory of crystallography is well estab-
lished, theory of amorphousness is beginning to emerge as a body of science in its
own right.

Arrangement of objects leads to creation of patterns. The invention of a repeat-
ing pattern as a thoughtful and creative process has ancient beginnings, at first
in art as discovered by archaeology and evidenced in mosaics existing in ancient
buildings, and later in science as known from old manuscripts; for example the
five ideal Greek solids. There are three types of patterns that can fill in Euclidean
space contiguously, and to infinity. These are:

« patterns with translational symmetry that possess an underlying lattice
» patterns with fivefold rotational symmetry but without translational symmetry
» random patterns with no lattice and no rotational symmetry.

Two-dimensional examples of such patterns are shown in Figure 1.1. All three
are used as conceptual models for atomic arrangements in solids.

Crystalline solids have been known and appreciated since antiquity. In modern
times the intrinsic elements of symmetry in single crystals of minerals were given
attention in 1822 by R. J. Haiiy (pronounced z-wee, a as in ‘aside’) in ‘Traité de
Cristallographie’. Shortly after, the theoretical treatments of W. H. Miller in 1839
on hkl notation, A. Bravais in 1845 on 14 lattices, A. Schénflies in 1892 and W. Bar-
low in 1898 on 230 space groups (with many contributions from others) resulted
in a complete theory of geometrical crystallography. Perfectly regular and ordered
structures of infinite extent are described by geometrical crystallography as per-
fect (ideal) solids, with positions and arrangements of all atoms defined precisely
along specific lattices. Theory of crystallography provides a datum from which
the ideal atomic arrangements (and defects) in real materials can be determined.
By comparison, no such universal laws or rules are well known for the atomic
structure in amorphous solids.

Fundamentals of Amorphous Solids: Structure and Properties, First Edition. Zbigniew H. Stachurski.
©2015 by Higher Education Press. All rights reserved.



1 Spheres, Clusters and Packing of Spheres

(b) ()

Figure 1.1 (a-c) Fragments of two- quasi-crystalline (computer pattern gener-
dimensional patterns representing the ated by T.R. Welberry of ANU) and amor-
three formats of atomic arrangement in phous (Aboriginal painting by Ada Ross,
solids: crystalline (tiles from Morocco), Australia). (color plot at the end of the book)

In a historical perspective, it would be interesting to contemplate the following
question: if Pythagoras were a statistician rather than deducing perfect harmony
from ratios of pure numbers on strings, would we have had a theory of amor-
phousness in solid- state developed ages ago? Looking back in time, one can draw
a direct line from the modern theory of geometric crystallography to the phi-
losophy of pure numbers and rational ratios of antiquity. The René-Just Haiiy
description of packing of elementary blocks to form a single crystal with a simple
relationship between its crystal faces and packing arrangement derives directly
from the deductive Pythagorean notion of perfect harmony based on the rela-
tionship between the length of the string and perfect harmonic notesas 1:2,2:3,
3:4, and son on. The relationship between atomic planes and crystal lattice is also
expressed by simple ratios of whole numbers, the reciprocals of which are known
as Miller indices. By comparison, relatively little is known about the structure of
amorphous solids. Our knowledge of amorphous structures seems incomplete
when compared with that of crystalline solids. In particular, the concept of an
ideal amorphous solid as a datum and the corresponding theory have been lacking
hitherto.

Until quite recently, amorphous solids were described as disordered crystalline
solids, with some degree of order intermediate between a liquid and a solid. This
was based on the understanding that glasses are free from the constraints that
govern the arrangements of atomic clusters in crystalline materials, so there is a
degree of ambiguity in the way that neighbouring clusters can be positioned and
oriented.

A possible implication deriving from this view is that amorphous solids orig-
inate from the corresponding ordered crystalline state. In the field of geometric
crystallography, a disordered crystalline structure implies the presence of defects
which are defined relative to the perfectly ordered structure. Therefore, disordered
materials are crystalline materials that, in principle, can be restored to the per-
fect crystalline state by the reversal of defects. It is conjectured that this cannot
be done in amorphous materials and that a different approach and terminology



1.1 Introduction
Ideal amorphous solid Ideal crystalline solid
Real amorphous solids Real crystglline_ solids
with imperfections with disorder
o - . o
—» <
Increasing flaw content Increasing defect content

Figure 1.2 A view of the structure of solids along an undefined, somewhat arbitrary
variable. The circles indicate the positions of the ideal (perfect) structures; the lines indicate
the spectrum of structures in real solids. (color plot at the end of the book)

should be used to describe their structure, namely, random atomic arrangement.
To emphasize this point, we note that in the field of statistics, when describing a
set of random data, it would be unfitting to refer to that set as disordered data.
Hence, it is proposed that amorphous structures, based on irregular packing of
spheres, should be referred to as having a random arrangement of atoms rather
than a disordered atomic arrangement. To promote this view, a drawing is shown
in Figure 1.2 with the contemplated relative positions of the two types of solids
and the envisaged discontinuity between the random and ordered types of atomic
arrangements that must exist. The very small gap between the circle and the line
on the crystalline side indicates that almost perfect single crystals can be grown.
The larger gap on the amorphous side indicates that the structure of glasses may
not be as close to the ideal amorphous solid as described later in this book. A
discontinuity in the line near the middle is meant to indicate that even highly dis-
ordered crystalline solids are not the same as highly flawed amorphous glasses,
and vice versa. This view is very close to that expressed by Kazunobu Tanaka et al.
in the introduction to their book on ‘Amorphous Silicon’.

A scientifically satisfactory explanation of the amorphous state continues to be a
challenge, and for this reason, we advance and promote the theoretical concept of
an ideal amorphous solid as a partial solution to this enigma. The right approach
to a definition of amorphousness is through an appropriate geometric and topo-
logical model of the ideal amorphous solid, as described in this chapter.

However, the usage of the word ‘disordered’ appears in dictionaries to mean
unpredictable, opposite to law and order. So, this seems to be also a matter of
habit and semantics, rather than a question of pure logic. Nevertheless, an
appropriate and consistent vocabulary conjures up a clear vision of the atomic
arrangements and helps to define the field of science of amorphous solids,
separate and distinct from the field of crystallography.

The study of atomic arrangements in amorphous solids was stimulated in the
1960s by theoretical work of J. D. Bernall on the structure of liquids, concur-
rent with experimental random packing of spheres by G. D. Scott. In the last few
decades, research into atomic arrangements in amorphous solids has separated
into two main streams: (i) more refined and detailed studies of packing of spheres
and molecules and (ii) atomistic simulations by molecular dynamics (MD), includ-
ing ab-initio methods. The understandings we gain from the two approaches are
of different nature. In the latter approach, a unique definition of an amorphous

3
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atomic structure cannot be achieved because in a simulated thermodynamic sys-
tem with suppressed self-assembly tendencies every simulation, even repeated on
the same system, must result in a different atomic arrangement. Modelling amor-
phous materials by these methods is equivalent to random packing with extreme
cooling rates of the order of 10'> K s™'. Nevertheless, these methods are success-
ful and appropriate to simulate the structure of real amorphous solids with atomic
arrangements containing imperfections. In the former case, simulations and geo-
metrical modelling follow the methodology of representing atoms by hard spheres
and creating representations of random atomic arrangement, naturally quite dif-
ferent from crystalline structures.

The earliest concept of atoms appears in a written record from Leucippus of
Miletus (once an ancient Greek city on the western coast of Anatolia) and Dem-
ocritus of Abdera (city—state on the coast of Thrace, its foundation attributed to
Heracles), Greek philosophers of 5-4th century BC (Taylor, 1999). They conjec-
tured that as matter is divided into smaller and smaller parts, there must be a limit
to this division; namely atoms, the smallest indivisible objects. Otherwise, if there
were no limit to the division, then the parts could be divided into “nothingness’,
and therefore, matter would not exist (reductio ad absurdum method of logic).
Their theory envisaged atoms as invisible and indivisible particles, not as perfectly
shaped as spheres but in the form of odd shapes with hooks and protrusions to
render various properties of matter, such as taste, colour, fluidity and friction, as
described by the Roman poet, Lucretius, in his De Rerum Natura (first century BC
didactic poem on Epicurean philosophy). Coincidentally, modern view of atoms
also shows electronic orbitals as having various shapes and protrusions, although
the complete atom, encompassing all the orbitals, is imagined as having a spherical
shape (Figure 1.3).

The concept of representing atoms by spheres has evolved gradually and over
a long period of time. In 1611, Joannis Kepler drew hexagonal close packing of
spheres to illustrate a compact solid (Kepler, 1611) and suggested that the hexag-
onal symmetry of snowflakes is due to the regular packing of the constituent par-
ticles. Some 50 years later, Robert Hooke wrote that crystals are composed of
close packed ‘spheroids’. At that time it was thought that spherical atomic parti-
cles must be close packed to form a rigid solid. Layers of round spherical objects,

Figure 1.3 (a) Atoms of Leccipus and Democritus as depicted by Lucretius (Adapted from
Scientific American). (b) Quantum mechanics view of electron clouds around atoms. (c) View
of an atom as a sphere encompassing all electronic orbitals.



