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Preface

Nowadays a beginning calculus class contains a variety of students: engineers, social
and physical scientists, mathematicians, and a host of others, as well as the uncom-
mitted. This variety prevents the teacher from treating all his students as candidates
for a Ph.D. in mathematics. On the other hand, the students, whatever their eventual
specialty, will need not only skill in using the calculus, but also some understanding.
I believe that as long as we restrict the duration of the introductory calculus course
to at most one year, we can meet the demand of the nonmathematician, and yet not
delay the education of the mathematician. In a sense the challenge itself suggests a
solution. After all, those who will apply the calculus should have some understand-
ing of the definite integral, the derivative, and the relation between them, while the
mathematics major should be aware of some of the applications of mathematics to
other sciences.

This means that a first calculus course should have mathematical substance with-
out encroaching on real analysis; it should have ample motivation and yet cleanly
distinguish theory from application. The somewhat novel organization of this book
is a response to this challenge. In Part I (Chapters 1 to 9) the student concentrates
on three basic ideas: the definite integral, the derivative, and the fundamental theo-
rem of calculus. (The definite integral is placed in Chapter 1 in order to have many
pages between it and the antiderivative, with which it is too easily confused, and to
alert students who may already have had a smattering of calculus.) After Chapter 6
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the student may be directed along any one of several routes, perhaps into Part II
or Part III. In Part II he meets such topics as the maximum and minimum of a
function, Taylor’s series, partial derivatives, differentiation of vectors, and Green’s
theorem in the plane. Part I1I, containing no new mathematical development, applies
the techniques developed earlier (mainly those of Part I) to significant problems
in the natural, social, and physical sciences.

The introductions to many concepts, such as the definite integral, the derivative,
and the limit of a sequence, begin with numerical examples and exercises (whose
answers are usually rounded oft to three decimal places). This is done not only to
make the abstract concrete, but also to compensate for a lack of down-to-earth
mathematical experience in high school. In particular, both the definite integral and
the derivative are preceded by four of their applications.

Such analytic geometry as is needed is developed in the text (slope of a line is
defined when we examine the tangent to a curve, and the equation of a plane is ob-
tained as an application of dot products). For convenience, an appendix on the
rudiments of analytic geometry is included. Two of the other appendixes are devoted
to the real numbers and functions.

Although the &,8 terminology is introduced, and formal definitions of limits and
the definite integral are presented in Chapter 3, the proofs of the basic properties
of limits are left to an appendix. I do not think that there is time in a first-year
calculus to develop skill with €,8. Rather than try to rush a heterogeneous group of
students through this form of “rigor,” I have chosen to include many counterexam-
ples, and to devote more attention to the fundamental theorem of calculus.

The logarithm is considered as the inverse of a given exponential function. This
approach makes more sense to most students than does the integral approach. How-
ever, the integral approach is included later (optionally) as an illustration of the
fundamental theorem of calculus.

The exercises in each section are broken into two groups by the symbol [] [] [
The second group in each section explores fine points, extends the material, or pre-
sents more difficulties than the first group, which, it should be emphasized, contains
more than enough routine problems to give the students an opportunity to develop
both skill and understanding. Answers accompany many exercises in the first group;
the Teacher’s Manual contains, in addition to answers to exercises in the first
group, solutions to exercises in the second group.

It seems to me that a student of the calculus should become familiar with a hand-
book of mathematical tables, which includes such useful items as the decimal ex-
pansion of 1/n and a review of trigonometry. Hence the text contains only the
briefest tables—enough to point out the behavior of the principal functions met in
the calculus.

The Teacher’s Manual discusses the use of the text in greater detail, as well as
its relation to CUPM recommendations.
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The criticisms of two mathematicians, Raymond A. Barnett of Oakland City
College and George N. Raney of the University of Connecticut, led to most of the
difterences between the first and final drafts of this book. Edwin H. Spanier of
the University of California at Berkeley and William Simons of Oregon State Uni-
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PART

The core
of the calculus

If an object moves
at a constant speed, then we can find the distance it travels by simply multiply-
ing its speed by the duration of its journey. But if the speed varies from instant to
instant, how can we then compute the length of its journey? Four questions of this
type lead us in Chapter 1 to the definite integral, one of the two basic concepts of
the calculus.

The question can be turned around: If we happen to know how far an object,
moving with a varying speed, travels during any interval of time (for instance, a
rock drops 161* feet in the first t seconds of a free fall), then how can we find its
speed at any instant? Such questions, posed in Chapter 2, introduce the derivative,
the other basic concept of the calculus.

In Chapters 3 through 6 we develop tools for answering both questions. Chap-
ters 7 through 9 offer an opportunity to develop skill in applying these tools in a
variety of situations.
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