

## Subsea Engineering



Yong Bai Qiang Bai

An expert guide to the key processes, technologies, and equipment that comprise contemporary offshore structures.

### **Key Features**

- Provides up-to-date technical overview of deepwater riser engineering
- · Conveys easy-to-understand information about design, analysis, and installation
- Addresses issues concerning both fixed and floating platforms
- · Covers technical equipment such as subsea control systems and pressure piping
- Includes discussions on connectors and equipment layout as well as remotely operated vehicles
- Is packed with easy-to-use design and analysis information

Written with clear and concise language, *Subsea Engineering Handbook* is based on the authors' 30 years of experience in the design, analysis, and installation of offshore structures. The authors provide engineers with extensive coverage of the entire spectrum of subjects in the discipline, from pipe installation and routing selection and planning to design, construction, and installation of fixed and floating platforms.

Full coverage is also given to topics such as materials and corrosion, inspection, welding, repair, risk assessment, and applicable design solutions. This book is a "must have" for anyone who has an appreciation of the overall issues and directed approaches to subsea engineering design solutions.

### Related Titles

Ahmed/Advanced Reservoir Engineering/978-0750677332 Ahmed/Reservoir Engineering Handbook, 4th edition/978-1856178037 Donaldson/Petrophysics, 2nd edition/978-0750677110







Bai



# SUBSEA ENGINEERING HANDBOOK

YONG BAI QIANG BAI



AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Gulf Professional Publishing is an imprint of Elsevier



Gulf Professional Publishing is an imprint of Elsevier 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK

© 2010 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

#### Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data Application submitted

#### British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

ISBN: 978-1-85617-689-7

For information on all Gulf Professional Publishing publications visit our Web site at www.elsevierdirect.com

10 11 12 10 9 8 7 6 5 4 3 2 1

Printed in USA

Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

**ELSEVIER** 

BOOK AID

Sabre Foundation

# SUBSEA ENGINEERING HANDBOOK

### **PREFACE**

#### MAY 2010

Subsea engineering is now a big discipline for the design, analysis, construction, installation and integrity management of subsea wellheads, trees, manifolds, jumpers, PLETS and PLEMs, etc. However, there is no book available that helps engineers understand the principles of subsea engineering.

This book is written for those who wish to become subsea engineers.

With the continuous encouragement of Mr. Ken McCombs of Elsevier, the authors spent a couple of years writing this book. The authors would like to thank those individuals who provided editing assistance (Ms. Lihua Bai & Ms. Shuhua Bai), initial technical writing for Chapters 1-4 (Mr. Youxiang Cheng), Chapters 6-8 (Mr. Xiaohai Song), Chapter 11 (Mr. Shiliang He), Chapter 5 (Mr. HongDong Qiao), Chapter 23 (Mr. Liangbiao Xu) and Chapter 27 (Mr. Mike Bian). They are employees of Offshore Pipelines & Risers (OPR) Inc. (bai@opr-inc.com, www.opr-inc.com, www.baiyongoe.com).

Thanks to all persons involved in reviewing the book, particularly Ms. Mohanambal Natarajan of Elsevier, who provided editory assistance.

We thank our families and friends for their support.

The first author would like to thank Zhejiang University for their support for publishing this book.

Prof. Yong Bai & Dr. Qiang Bai Houston, USA



### **ABOUT THE AUTHORS**

**Professor Yong Bai** is the president of Offshore Pipelines & Risers Inc. in Houston, and also the director of the Offshore Engineering Research Center at Zhejiang University. He has previously taught at Stavanger University in Norway where he was a professor of offshore structures. He has also worked with ABS as manager of the Offshore Technology Department and DNV as the JIP project manager.

Professor Yong Bai has also worked for Shell International E & P as a staff engineer. Through working at JP Kenny as manager of advanced engineering and at MCS as vice president of engineering, he has contributed to the advancement of methods and tools for the design and analysis of subsea pipelines and risers. Professor Bai is the author of the books *Marine Structural Design* and *Subsea Pipelines and Risers* and more than 100 papers on the design and installation of subsea pipelines and risers.

OPR has offices in Houston, Texas, USA; Kuala Lumpur, Malaysia; and Harbin, Beijing, and Shanghai, China. OPR is engaged in the design, analysis, installation, engineering, and integrity management of pipelines, risers, and subsea systems such as subsea wellheads, trees, manifolds, and PLET/PLEMs.

**Dr. Qiang Bai** has more than 20 years of experience in subsea/offshore engineering including research and engineering execution. He has worked at Kyushu University in Japan, UCLA, OPE, JP Kenny, and Technip. His experience includes various aspects of flow assurance and the design and installation of subsea structures, pipelines, and riser systems. Dr. Bai is coauthor of *Subsea Pipelines and Risers*.

此为试读,需要完整PDF请访问: www.ertongbook.com

## LIST OF ABBREVIATIONS

^ &R - Abandonment and recovery

AA - Anti agglomerate

AACE - Advancement of cost engineering

AAV - Annulus access valve

ACFM - Alternating current field measurement

AHC - Active heave compensation

AHV - Anchor handling vessel

AMV - Annulus master valve

APDU - Asphaltene precipitation detection unit

APV - Air pressure vessel

ASD - Allowable stress design

ASV - Annulus swab valve

AUV - Autonomous underwater vehicle

AWV - Annulus wing valve

B&C - Burial and coating

BM - Bending moment

BOPD - Barrels of oil per day

BR - Bend restrictor

C/WO - Completion and workover

CAPEX - Capital expenditures

CAPEX - Capital expenditures

CAT - Connector actuation tool

CCD - Charge-coupled device

CCO - Component change-out tool

CDTM - Control depth towing method

CFP - Cold flow pipeline

CG - Center of gravity

CI - Corrosion inhibitor

CII - Colloidal instability index

CIU - Chemical injection unit

CMC - Crown-mounted compensator

CoB - Cost of blowout

CoG - Center of gravity

CP - Cathodic protection

CPT - Compliant piled tower

CPT - Cone penetration test

CRA - Corrosion-resistant alloy

CV - Coefficient value

CVC - Pipeline end connector

CVI - Close visual inspection

DA - Diver assist

DCU - Dry completion unit

DDF - Deepdraft semi-submersible

DEG - Diethylene glycol

DFT - Dry film thickness

DGPS - Differential global positioning system

DH - Direct hydraulic

DHSV - Downhole safety valve

DOP - Dilution of position

DP - Dynamic positioning

DSS - Direct simple shear

DSV - Diving support vessel

EC - External corrosion

EDM - Electrical distribution module

EDP - Emergency disconnect package

EDU - Electrical distribution unit

EFAT - Extended factory acceptance test

EFL - Electric flying lead

EGL - Energy grade line

EH - Electrical heating

EI - External impact

EOS - Equation of state

EPCI - Engineering, procurement, construction and installation

EPU - Electrical power unit

EQD - Emergency quick disconnect

ESD - Emergency shutdown

ESP - Electrical submersible pump

FAR - Flexural anchor reaction

FAT - Factory acceptance test

FBE - Fusion bonded epoxy

FDM - Finite difference method

FE - Finite element

FEA - Finite element analysis

FEED - Front-end engineering design

FEM - Finite element Method

FMECA - Failure mode, effects, and criticality analysis

FOS - Factor of safety

FPDU -Floating production and drilling unit

FPS - Floating production system

FPSO - Floating production, storage and offloading

FPU - Floating production unit

FSHR - Free standing hybrid riser

FSO - Floating storage and offloading

FSV - Field support vessel

FTA - Fault tree analysis

GL - Guideline

GLL - Guideline-less

GoM - Gulf of Mexico

GOR - Gas/oil ratio

GPS - Global positioning system

GSPU - Polyurethane-glass syntactic

GVI - General visual inspection

HAZID - Hazard identification

HCLS - Heave compensated landing system

HCM - HIPPS control module

HCR - High collapse resistance

HDM -Hydraulic distribution module

HDPE - High density polyethylene

HFL - Hydraulic flying lead

HGL - Hydraulic grade line

HIPPS - High integrity pressure protection system

HISC - Hydrogen-induced stress cracking

HLV - Heavy lift vessel

HMI- Human machine interface

HP/HT - High pressure high temperature

HPU - Hydraulic power unit

HR - Hybrid riser

HSE - Health, safety, and environmental

HSP - Hydraulic submersible pump

HT - Horizontal tree

HTGC - High temperature gas chromatography

HXT - Horizontal tree

HXU - Heat exchanger unit

IA - Inhibitor availability

IBWM - International bureau of weights and measures

IC - Internal corrosion

ICCP - Impressed current cathodic protection

IE - Internal erosion

IMR - Inspection, maintenance, and repair

IPU - Integrated production umbilical

IRP - Inspection reference plan

IRR - Internal rate of return

ISA - Instrument society of America

ISO - International Organization for Standards

IWOCS - Installation and workover control system

JIC - Joint industry conference

JT - Joule Thompson

KI - Kinetic inhibitor

L/D - Length/diameter

LARS - Launch and recovery system

LBL - Long baseline

LC - Life cycle cost

LCWR - Lost capacity while waiting on rig

LDHI - Low dosage hydrate inhibitor

LFJ - Lower flexjoint

LOT - Linear override tool

LP - Low pressure

LPMV - Lower production master valve

LRP - Lower riser package

LWRP - Lower workover riser package

MAOP - Maximum allowable operating pressure

MASP - Maximum allowable surge pressure

MBR - Minimum bend radius

MCS - Master control station

MEG - Mono ethylene glycol

MF - Medium frequency

MIC - Microbiological induced corrosion

MMBOE - Million barrels of oil equivalent

MOPU - Mobile offshore drilling unit

MPI - Magnetic particle inspection

MPP - Multiphase pump

MQC - Multiple quick connector

MRP - Maintenance reference plan

MTO - Material take-off

NAS - National aerospace standard

NDE - None destructive examination

NDT - Nondestructive testing

NGS - nitrogen generating system

NPV - Net present value

NS - North sea

NTNU - The Norwegian university of science and technology

O&M - Operations and maintenance

OCR - Over consolidation ratio

OCS - Operational Control System

OHTC - Overall heat transfer coefficient

OPEX - Operation expenditures

OREDA - Offshore reliability data

OSI - Oil States Industries

OTC - Offshore Technology conference

PAN - Programmable acoustic navigator

PCP - Piezocone penetration

PGB - Production guide base

PHC - Passive heave compensator

PhS - Phenolic syntactic

PIP - Pipe in pipe

PLC - Programmable logic controller

PLEM - Pipeline end manifold

PLET - Pipeline end termination

PLL - Potential loss of life

PMV - Production master valve

PMV - Production master valve

PoB - Probability of blowout

POD - Point of disconnect

PP - Polypropylene

PPF - Polypropylene foam

PSCM - Procurement and supply chain management

PSV - Production swab valve

PT - Pressure transmitter

PTT - Pressure/Temperature Transducer

PU - Polyurethane

PWV - Production wing valve

QC - Quality control

QE - Quality engineer

QP - Quality program

QRA - Quantitative risk assessment

RAO -Response amplitude operator

RBD - Reliability block diagram

RBI - Risk-based inspection

RCDA - Reliability-centered design analysis

RCMM - Reliability capability maturity model

REB - Reverse end bearing

ROT - Remote operated tool

ROV - Remote operated vehicle

RPPF - Polypropylene-reinforced foam combination

RSV - ROV support vessel

SAM - Subsea accumulator module

SAMMB - Subsea accumulator module mating block

SBP - Sub-bottom profiler

SCF - Stress concentration factor

SCM - Subsea control module

SCMMB - Subsea control module mounting base

SCR - Steel catenary riser

SCSSV - Surface controlled subsurface safety valve

SDA - Subsea distribution assembly

SDS - Subsea distribution system

SDU - Subsea distribution unit

SEM - Subsea electronics module

SEP - Epoxy syntactic

SEPLA - Suction embedded plate anchor

SIS - Safety instrumented system

SIT - Silicon intensified target

SIT - System integration test

SLEM - Simple linear elastic model

SPCS - Subsea production control system

SPCU - Subsea production communication unit

SPS - Subsea production system

SPU - Polyurethane-syntactic

SSC - Sulfide stress cracking

SSCC - Stress corrosion cracking

SSP - Subsea processing