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Solar System Data

Body Mass (kg) Mean Radius (m) Period (s) Distance from Sun (m)
Mercury  3.18 X 102 2.43 X 106 7.60 X 106 5.79 x 1010
Venus 4.88 X 1024 6.06 X 106 1.94 X 107 1.08 x 1011
Earth 5.98 X 1024 6.37 X 106 3.156 X 107 1.496 x 1011
Mars 6.42 X 1023 3.37 X 106 5.94 X 107 2.28 X 101!
Jupiter 1.90 x 1027 6.99 X 107 3.74 X 108 7.78 X 1011
Saturn 5.68 X 1026 5.85 X 107 9.35 X 108 1.43 X 1012
Uranus 8.68 X 1025 2.33 X 107 2.64 X 109 2.87 X 1012
Neptune  1.03 X 1026 2.21 X 107 5.22 X 10° 4.50 X 1012
Pluto ~1.4 X 1022 ~1.5 X 108 7.82 X 109 5.91 X 1012
Moon 7.36 X 1022 1.74 X 106 — —
Sun 1.991 x 1030 6.96 X 108 — —
Physical Data Often Used=

Average Earth-Moon distance 3.84 X 108 m

Average Earth-Sun distance 1.496 X 101 m

Average radius of the Earth 6.37 X 105 m

Density of air (20°C and 1 atm) 1.20 kg/m?

Density of water (20°C and 1 atm) 1.00 X 10% kg/m3

Free-fall acceleration 9.80 m/s?

Mass of the Earth

Mass of the Moon

Mass of the Sun

Standard atmospheric pressure

5.98 X 1024 kg
7.36 X 1022 kg
1.99 X 10% kg
1.013 X 105 Pa

a2 These are the values of the constants as used in the text.

Some Prefixes for Powers of Ten

Power Prefix Abbreviation Power Prefix Abbreviation
1018 atto a 10! deka da
1015 femto f 102 hecto h

1012 pico p 103 kilo k

109 nano n 106 mega M

10-6 micro 7 109 giga G

10-3 milli m 1012 tera T

10-2 centi c 1015 peta P

101 deci d 1018 exa E




Standard Abbreviations and Symbols of Units

Abbreviation Unit Abbreviation Unit
A ampere in. inch
A angstrom J joule
u atomic mass unit K kelvin
atm atmosphere kcal kilocalorie
Btu British thermal unit kg kilogram
C coulomb kmol kilomole
oG degree Celsius b pound
cal calorie m meter
deg degree (angle) min minute
eV electron volt N newton
°F degree Fahrenheit Pa pascal
F farad rev revolution
ft foot s second
G gauss T tesla
g gram A% volt
H henry w waftt
h hour Wb weber
hp horsepower pum micrometer
Hz hertz Q ohm
Mathematical Symbols Used in the Text and Their Meaning
Symbol Meariing
= is equal to
= is defined as
# is not equal to
o is proportional to
> is greater than
< is less than
>(K) is much greater (less) than
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is approximately equal to

the change in x

the sum of all quantities x;from i=1toi= N

the magnitude of x (always a nonnegative quantity)

A x approaches zero

the derivative of x with respect to ¢

the partial derivative of x with respect to ¢

integral




Aerial view of windsurfer riding on the crest
of o wave. This dramatic photograph
illustrates many physical principles that are
described in the text. For example, the
water wave carries energy and momenfum
as it fravels from one location fo another.
The surfer and the surfboard move in o
complex path under the action of several
forces, including gravity, wind resistance,
and the force of water on the

surfboard.  (© Darrell Wong//Tony Stone

Images)
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Mechanical Waves

s we look around us, we

find many examples of

objects that vibrate: a

pendulum, the strings

of a guitar, an object

suspended on a spring, the piston of

an engine, the head of a drum, the

reed of a saxophone. Most elastic ob-

jects vibrate when an impulse is ap-

plied to them. That is, once they are

distorted, their shape tends to be re-

stored to some equilibrium configu-

ration. Even at the atomic level, the

atoms in a solid vibrate about some

position as if they were connected

to their neighbors by imaginary
springs.

Wave motion is closely related

to the phenomenon of vibration.

The impetus is much quicker than the water,
for it often happens that the wave flees the
place of ifs creation, while the water does
not; like the waves made in a field of grain
by the wind, where we see the waves
running across the field while the grain

remains in place.

LEONARDO DA VINCI

Sound waves, earthquake waves,
waves on stretched strings, and water
waves are all produced by some
source of vibration. As a sound wave
travels through some medium, such
as air, the molecules of the medium
vibrate back and forth; as a water
wave travels across a pond, the water
molecules vibrate up and down and
backward and forward. As waves
travel through a medium, the parti-
cles of the medium move in repeti-
tive cycles. Therefore, the motion of
the particles bears a strong resem-
blance to the periodic motion of a
vibrating pendulum or a mass at-
tached to a spring.

There are many other phenom-
ena in nature whose explanation re-

quires us to understand the concepts
of vibrations and waves. For instance,
although many large structures, such
as skyscrapers and bridges, appear to
be rigid, they actually vibrate, a fact
that must be taken into account by
the architects and engineers who de-
sign and build them. To understand
how radio and television work, we
must understand the origin and na-
ture of electromagnetic waves and
how they propagate through space.
Finally, much of what scientists have
learned about atomic structure has
come from information carried by
waves. Therefore, we must first study
waves and vibrations in order to un-
derstand the concepts and theories
of atomic physics.
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Large waves sometimes travel great
distances over the surface of the ocean,
yet the water does not flow with the
wave. The crests ond troughs of the
wave often form repetifive

pattems.  (Superstock)
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Wave Motion

ost of us experienced waves as children when we dropped a pebble
into a pond. At the point where the pebble hits the water surface,
waves are created by the impact. These waves move outward from
the creation point in expanding circles until they finally reach the
shore. If you were to examine carefully the motion of a leaf floating on the distur-
bance, you would see that the leaf moves up, down, and sideways about its original
position but does not undergo any net displacement away from or toward the point
where the pebble hits the water. The water molecules just beneath the leaf, as well
as all the other water molecules on the pond surface, behave in the same way. That
is, the water wave moves from one place to another, and yet the water is not carried
with it.
An excerpt from a book by Einstein and Infeld gives the following remarks
concerning wave phenomena.!

L A. Einstein and L. Infeld, The Evolution of Physics, New York, Simon and Schuster, 1961. Excerpt from
““What is a Wave? .



16.1 Introduction

A bit of gossip starting in Washington reaches New York very quickly, even though nota
single individual who takes part in spreading it travels between these two cities. There
are two quite different motions involved, that of the rumor, Washington to New York,
and that of the persons who spread the rumor. The wind, passing over a field of grain,
sets up a wave which spreads out across the whole field. Here again we must distinguish
between the motion of the wave and the motion of the separate plants, which undergo
only small oscillations. . . . The particles constituting the medium perform only small
vibrations, but the whole motion is that of a progressive wave. The essentially new thing
here is that for the first time we consider the motion of something which is not matter,
but energy propagated through matter.

Water waves and the waves across a grainfield are only two examples of physical
phenomena that have wavelike characteristics. The world is full of waves, the two
main types of which are mechanical waves and electromagnetic waves. We have
already mentioned examples of mechanical waves: sound waves, water waves, and
‘‘grain waves.”’ In each case, there is some physical medium being disturbed —air
molecules, water molecules, and stalks of grain in our three particular examples.
Electromagnetic waves are a special class of waves that do not require a medium in
order to propagate, some examples being visible light, radio waves, television
signals, and x-rays. Here in Part II of this book, we shall study only mechanical
waves.

The wave concept is abstract. When we observe what we call a water wave, what
we see is a rearrangement of the water’s surface. Without the water, there would be
no wave. A wave traveling on a string would not exist without the string. Sound
waves travel through air as a result of pressure variations from point to point. In
such cases involving mechanical waves, what we interpret as a wave corresponds to
the disturbance of a body or medium. Therefore, we can consider a wave to be the
motion of a disturbance.

The mathematics used to describe wave phenomena is common to all waves. In
general, we shall find that mechanical wave motion is described by specifying the
positions of all points of the disturbed medium as a function of time.

16.1 INTRODUCTION

The mechanical waves discussed in this chapter require (1) some source of distur-
bance, (2) a medium that can be disturbed, and (3) some physical connection
through which adjacent portions of the medium can influence each other. We
shall find that all waves carry energy. The amount of energy transmitted through a
medium and the mechanism responsible for that transport of energy differ from
case to case. For instance, the power of ocean waves during a storm is much greater
than the power of sound waves generated by a single human voice.

Three physical characteristics are important in characterizing waves: wave-
length, frequency, and wave speed. One wavelength is the minimum distance between
any two points on a wave that behave identically, as shown in Figure 16.1.

Most waves are periodic, and the frequency of such periodic waves is the time rate
at which the disturbance repeats itself.

Waves travel with a specific speed, which depends on the properties of the
medium being disturbed. For instance, sound waves travel through air at 20°C
with a speed of about 344 m/s (781 mi/h), whereas the speed of sound in most
solids is higher than 344 m/s. Electromagnetic waves travel very swiftly through a
vacuum with a speed of approximately 3.00 X 108 m/s (186 000 mi/s).
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FIGURE 16.1 The wavelength A of
a wave is the distance between
adjacent crests or adjacent
troughs.
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FIGURE 16.2 A wave pulse travel-
ing down a stretched rope. The
shape of the pulse is approxi-
mately unchanged as it travels
along the rope.

B =t r—_—

FIGURE 16.3 A pulse traveling on
a stretched rope is a transverse
wave. That is, any element P on
the rope moves (blue arrows) in
a direction perpendicular to the
wave motion (red arrows).

CHAPTER 16 Wave Motion

16.2 TYPES OF WAVES

One way to demonstrate wave motion is to flick one end of a long rope that is
under tension and has its opposite end fixed, as in Figure 16.2. In this manner, a
single wave bump (called a wave pulse) is formed and travels (to the right in Fig.
16.2) with a definite speed. This type of disturbance is called a traveling wave, and
Figure 16.2 represents four consecutive ‘‘snapshots’ of the traveling wave. As we
shall see later, the speed of the wave depends on the tension in the rope and on the
properties of the rope. The rope is the medium through which the wave travels.
The shape of the wave pulse changes very little as it travels along the rope.?

As the wave pulse travels, each segment of the rope that is disturbed moves in a direction
perpendicular to the wave motion. Figure 16.3 illustrates this point for one particular
segment, labeled P. Note that no part of the rope ever moves in the direction of the
wave.

A traveling wave that causes the particles of the disturbed medium to move
perpendicular to the wave motion is called a transverse wave.

A traveling wave that causes the particles of the medium to move parallel to
the direction of wave motion is called a longitudinal wave.

Sound waves, which we discuss in Chapter 17, are one example of longitudinal
waves. Sound waves in air are a series of high- and low-pressure regions, or distur-
bances, traveling in the same direction as the displacements. A longitudinal pulse
can be easily produced in a stretched spring, as in Figure 16.4. The left end of the
spring is given a sudden movement (consisting of a brief push to the right and
equally brief pull to the left) along the length of the spring; this movement creates
a sudden compression of the coils. The compressed region C (pulse) travels along
the spring, and so we see that the disturbance is parallel to the wave motion. The
compressed region is followed by a region where the coils are stretched.

Some waves in nature are neither transverse nor longitudinal, but a combina-
tion of the two. Surface water waves are a good example. When a water wave travels
on the surface of deep water, water molecules at the surface move in nearly circular
paths, as shown in Figure 16.5, where the water surface is drawn as a series of crests
and troughs. Note that the disturbance has both transverse and longitudinal com-
ponents. As the wave passes, water molecules at the crests move in the direction of

Compressed Compressed

MVIWWIAAAMAAAAY

Stretched Stretched

FIGURE 16.4 A longitudinal pulse along a stretched spring. The displacement of the coils is
in the direction of the wave motion. For the starting motion described in the text, the
compressed region is followed by a stretched region.

2 Strictly speaking, the pulse will change its shape and gradually spread out during the motion. This
effect is called dispersion and is common to many mechanical waves.
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FIGURE 16.5 Wave motion on the surface of water. The molecules at the water’s surface move
in nearly circular paths. Each molecule is displaced horizontally and vertically from its
equilibrium position, represented by circles.

the wave, and molecules at the troughs move in the opposite direction. Since the
molecule at the crest in Figure 16.5 will soon be at a trough, its movement in the
direction of the wave will soon be canceled by its movement in the opposite direc-
tion. Since this argument holds for every disturbed water molecule, we conclude
that there is no net displacement of any water molecule.

16.3 ONE-DIMENSIONAL TRAVELING WAVES

Let us now give a mathematical description of a one-dimensional traveling wave.
Consider again a wave pulse traveling to the right with constant speed v on a long
taut string, as in Figure 16.6. The pulse moves along the x axis (the axis of the
string), and the transverse displacement of the string (the medium) is measured
with the coordinate y.

Figure 16.6a represents the shape and position of the pulse at time ¢ = 0. At
this time, the shape of the pulse, whatever it may be, can be represented as y =
f(x). That s, yis some definite function of x. The maximum displacement of the string,
A, is called the amplitude of the wave. Since the speed of the wave pulse is v, it
travels to the right a distance vt in a time ¢ (Fig. 16.6b).

If the shape of the wave pulse doesn’t change with time, we can represent the
string displacement y for all later times measured in a stationary frame having the
origin at 0 as

y = f(x — vt) (16.1)

P
fs f//

0 x 0 X

(a) Pulse at t=0 (b) Pulse at time ¢

FIGURE 16.6 A one-dimensional wave pulse traveling to the right with a speed v. (a) At ¢ = 0,
the shape of the pulse is given by y = f(x). (b) At some later time ¢, the shape remains
unchanged and the vertical displacement of any point P of the medium is given by y =

flx — vt).
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If the wave pulse travels to the left, the string displacement is

Wave traveling to the left y= f(x + vt) (16.2)

The displacement y, sometimes called the wave function, depends on the two vari-
ables xand ¢. For this reason, it is often written y(x, ¢), which is read ‘“‘yas a function
of xand ¢.”

It is important to understand the meaning of y. Consider a particular point Pon
the string, identified by a particular value of its coordinates. As the wave passes P,
the y coordinate of this point increases, reaches a maximum, and then decreases to
zero. Therefore, the wave function y represents the y coordinate of any medium point P at
any time t. Furthermore, if ¢ is fixed, then the wave function y as a function of x
defines a curve representing the shape of the pulse at this time. This curve is equivalent to a
“snapshot’ of the wave at this time.

For a pulse that moves without changing shape, the speed of the pulse is the
same as that of any feature along the pulse, such as the crest in Figure 16.6b. To
find the speed of the pulse, we can calculate how far the crest moves in a short time
and then divide this distance by the time interval. In order to follow the motion of
the crest, some particular value, say x,, must be substituted in Equation 16.1 for
x — vt. Regardless of how x and ¢ change individually, we must require that x —
vt = X, in order to stay with the crest. This expression, therefore, represents the
equation of motion of the crest. At ¢ = 0, the crest is at x = x,; at a time dt later,
the crestis at x = x; + v dt. Therefore, in a time dt, the crest has moved a distance
dx = (xy + v dt) — xy = v dt. Hence, the wave speed is

Wave speed v = % (16.3)

As noted above, the wave velocity must not be confused with the transverse velocity
(which is in the ydirection) of a particle in the medium (nor with the longitudinal
velocity for a longitudinal wave).

EXAMPLE 16.1 A Pulse Moving to the Right

A wave pulse moving to the right along the x axis is repre- 2

sented by the wave function ¥ 0) = x2 + 1 M=
2 2
’ ) me— 5 L. S = 1.
Yo ) =0T+ 1 ¥ 10 = —snryy A= 10s
where x and y are measured in centimeters and ¢ is in sec- (x, 2.0) = 2 —90
onds. Let us plot the waveform at t=0, t=1.0s, and ¢t = W& = (x—6.002+1 Sl S

2.0 s.

Solution First, note that this function is of the form y =
f(x — vt). By inspection, we see that the speed of the wave is
v = 3.0 cm/s. Furthermore, the wave amplitude (the maxi-
mum value of y) is given by A = 2.0 cm. At times ¢ = 0, ¢ =
1.0 s, and ¢ = 2.0 s, the wave function expressions are

We can now use these expressions to plot the wave function
versus x at these times. For example, let us evaluate y(x, 0) at
x = 0.50 cm:

2

y(050, 0) = (()5())—2+1

= 1.6 cm
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Likewise, y(1.0, 0) = 1.0 cm, (2.0, 0) = 0.40 cm, and so on.  Figures 16.7b and 16.7c, respectively. These snapshots show
A continuation of this procedure for other values of xyields  that the wave pulse moves to the right without changing its
the waveform shown in Figure 16.7a. In a similar manner, shape and has a constant speed of 3.0 cm/s.

one obtains the graphs of y(x, 1.0) and y(x, 2.0), shown in

y(em) y(cm)

2.0

0.5
e ——1
6 x(cm) 0 1 2 3 4 5 6 7 x(cm)
(a) (b)
y(cm)

—- 3 c /S
2.0

1.6
1.0
0.5

FIGURE 16.7 (Example 16.1) Graphs of the function y(x, ) =
2/[(x =802+ 1].(a) t=0, (b) t=1s,and (c) t = 2s.

16.4 SUPERPOSITION AND INTERFERENCE OF WAVES

Many interesting wave phenomena in nature cannot be described by a single mov-
ing pulse. Instead, one must analyze complex waveforms in terms of a combination
of many traveling waves. To analyze such wave combinations, one can make use of
the superposition principle:

If two or more traveling waves are moving through a medium, the resultant
wave function at any point is the algebraic sum of the wave functions of the
individual waves.

Linear waves obey the
superposition principle

Waves that obey this principle are called linear waves, and they are generally char-
acterized by small wave amplitudes. Waves that violate the superposition principle
are called nonlinear waves and are often characterized by large amplitudes. In this
book, we deal only with linear waves.

One consequence of the superposition principle is that (wo traveling waves can
pass through each other without being destroyed or even altered. For instance, when two
pebbles are thrown into a pond and hit the surface at two places, the expanding
circular surface waves do not destroy each other. In fact, they pass right through
each other. The complex pattern that is observed can be viewed as two indepen-
dent sets of expanding circles. Likewise, when sound waves from two sources move
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CHAPTER 16 Wave Motion

his simulator allows you to model wave motion involving one or two

traveling waves. For the case of a single wave, you will be able to specify

the velocity and shape of the wave by selecting values from a given list,

or define your own wave shape and velocity. For a wave traveling on a
string, you can specify whether an end of the string is fixed or free and examine
how the wave is reflected at this end in each case. When studying two waves
traveling on a string, you can investigate their superposition as they move
through each other.

through air, they also pass through each other. The resulting sound one hears at a
given point is the resultant of both disturbances.

A simple pictorial representation of the superposition principle is obtained by
considering two pulses traveling in opposite directions on a taut string, as in Figure
16.8. The wave function for the pulse moving to the right is y;, and the wave
function for the pulse moving to the left is yo. The pulses have the same speed but
different shapes. Each pulse is assumed to be symmetric, and the displacement of
the medium is in the positive y direction for both pulses. (Note that the superposi-
tion principle applies even if the two pulses are not symmetric and even when they
travel at different speeds.) When the waves begin to overlap (Fig. 16.8b), the
resulting complex waveform is given by y; + y,. When the crests of the pulses
coincide (Fig. 16.8¢), the resulting waveform y, + y, is symmetric. The two pulses
finally separate and continue moving in their original directions (Fig. 16.8d).
Note that the final waveforms remain unchanged, as if the two pulses had never
met!

The combination of separate waves in the same region of space to produce a
resultant wave is called interference. For the two pulses shown in Figure 16.8, the
displacement of the medium is in the positive y direction for both pulses, and the
resultant waveform (when the pulses overlap) exhibits a displacement greater than
those of the individual pulses. Since the displacements caused by the two pulses
are in the same direction, we refer to their superposition as constructive interfer-
ence.
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FIGURE 16.8 (Left) Two wave pulses traveling on a stretched string in opposite directions pass
through each other. When the pulses overlap, as in (b) and (c), the net displacement of the
string equals the sum of the displacements produced by each pulse. Since each pulse pro-
duces positive displacements of the string, we refer to their superposition as constructive
interference. (Right) Photograph of superposition of two equal and symmetric pulses traveling
in opposite directions on a stretched spring. (Photo, Education Development Center, Newton, Mass.)

Now consider two pulses traveling in opposite directions on a taut string, where
now one is inverted relative to the other, as in Figure 16.9. In this case, when the
pulses begin to overlap, the resultant waveform is given by y; — y,. Again the two
pulses pass through each other as indicated. Since the displacements caused by the
two pulses are in opposite directions, we refer to their superposition as destructive
interference.

Interference of water waves produced in a ripple tank. The sources of the waves are two
objects that vibrate perpendicularly to the surface of the tank. (Courtesy of Central Scientific CO.)
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Interference patterns produced
by outward spreading waves
from several drops of water
falling into a pond. (Martin
Dohrn/SPL/Photo Researchers)
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Speed of a wave on a strefched
string

CHAPTER 16 Wave Motion

(d)

—
Pr—
(e) ()

FIGURE 16.9 (Left) Two wave pulses traveling in opposite directions with displacements that
are inverted relative to each other. When the two overlap as in (c), their displacements
subtract from each other. (Right) Photograph of superposition of two symmetric pulses
traveling in opposite directions, where one is inverted relative to the other. (Photo, Education
Development Center, Newton, Mass.)

16.5 THE SPEED OF WAVES ON STRINGS

The speed of linear mechanical waves depends only on the properties of the medium through
which the wave travels. In this section, we focus on determining the speed of a
transverse pulse traveling on a taut string. If the tension in the string is F and its
mass per unit length is u, then as we shall show, the wave speed is

0= \/E (16.4)
W

First, let us verify that this expression is dimensionally correct. The dimensions
of Fare MLT 2, and the dimensions of u are ML.~!. Therefore, the dimensions of
F/u are 1.2/T2; hence the dimensions of VF/u are L/T, which are indeed the
dimensions of speed. No other combination of Fand u is dimensionally correct if
we assume that they are the only variables relevant to the situation.

Now let us use a mechanical analysis to derive the above expression. Consider a
pulse moving to the right with a uniform speed v, measured relative to a stationary
frame of reference. Instead of staying in this frame, it is more convenient to choose
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as our reference frame one that moves along with the pulse with the same speed, so
that the pulse is at rest in this frame, as in Figure 16.10a. This change of reference
frame is permitted because Newton’s laws are valid in either a stationary frame or
one that moves with constant velocity.

A small segment of the string of length Asforms an approximate arc of a circle
of radius R, as shown in Figure 16.10a and magnified in Figure 16.10b. In the
pulse’s frame of reference (which is moving to the right along with the pulse), the
shaded segment is moving down with a speed v. This small segment has a centripe-
tal acceleration equal to v2/ R, which is supplied by the force of tension F in the
string. The force F acts on each side of the segment, tangent to the arc, as in Figure
16.10b. The horizontal components of F cancel, and each vertical component
F sin 6 acts radially inward toward the center of the arc. Hence, the total radial
force is 2F sin 6. Since the segment is small, 8 is small and we can use the familiar
small-angle approximation sin 6 =~ 6. Therefore, the total radial force can be ex-
pressed as

F,= 2Fsin § ~ 2F9

The small segment has a mass m = u As. Since the segment forms part of a
circle and subtends an angle 26 at the center, As = R(26), and hence

m=wAs=2uR6

If we apply Newton’s second law to this segment, the radial component of
motion gives

2 2ROV
F,=% or 2F0:“—Rv—

where F, is the force that supplies the centripetal acceleration of the segment and
maintains the curvature at this point. Solving for v gives Equation 16.4. Notice that
this derivation is based on the assumption that the pulse height is small relative to
the length of the string. Using this assumption, we were able to use the approxi-
mation that sin 6 =~ 6. Furthermore, the model assumes that the tension Fis not
affected by the presence of the pulse, so that Fis the same at all points on the
string. Finally, this proof does not assume any particular shape for the pulse.
Therefore, we conclude that a pulse of any shapewill travel on the string with speed
v = \/m without any change in pulse shape.
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(b)

FIGURE 16.10 (a) To obtain the
speed v of a wave on a stretched
string, it is convenient to de-
scribe the motion of a small seg-
ment of the string in a moving
frame of reference. (b) The net
force on a small segment of
length Asis in the radial direc-
tion. The horizontal compo-
nents of the tension force cancel.

EXAMPLE 16.2 The Speed of a Pulse on a Cord

A uniform cord has a mass of 0.300 kg and a length of 6.00 m
(Fig. 16.11). Find the speed of a pulse on this cord.

Solution The tension Fin the cord is equal to the weight of
the suspended 2.00-kg mass:

F= mg= (2.00 kg) (9.80 m/s2) = 19.6 N

(This calculation of the tension neglects the small mass of ~ FIGURE 16.11
the cord. Strictly speaking, the cord can never be exactly hor-

izontal, and therefore the tension is not uniform.)

II.OO m

(Example 16.2) The tension F in the cord is
maintained by the suspended mass. The wave speed is given
by the expression v = VF/ .
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The mass per unit length w is

F_ [ 196N
=Al—=A]l—"" — 19:.8m/
! \/; 0.0500 kgym NS

m _ 0.300 k
= 2 Exercise Find the time it takes the pulse to travel from the

. = 0.0500 kg/
K=~ 6.00m g/m

Therefore, the wave speed is

Incident
ulse

(a)

(::"”“mzzv

Reflected
pulse

FIGURE 16.12 The reflection of a
traveling wave pulse at the fixed
end of a stretched string. The re-
flected pulse is inverted, but its
shape remains the same.

Incident

—
pulse /\\Mp\

r(b) —’/ﬁ

—

(c)

Reflected
) pulse
i

st

(d)

FIGURE 16.13 The reflection of a
traveling wave pulse at the free
end of a stretched string. The re-
flected pulse is not inverted.

wall to the pulley.
0.253 s.

Answer

16.6 REFLECTION AND TRANSMISSION OF WAVES

Whenever a traveling wave reaches a boundary, part or all of the wave is reflected.
For example, consider a pulse traveling on a string fixed at one end (Fig. 16.12).
When the pulse reaches the wall, it is reflected. Because the support attaching the
string to the wall is rigid, the pulse does not transmit any part of the disturbance to
the wall and its amplitude does not change.

Note that the reflected pulse is inverted. This can be explained as follows.
When the pulse reaches the fixed end of the string, the string produces an upward
force on the support. By Newton’s third law, the support must then exert an equal
and opposite (downward) reaction force on the string. This downward force causes
the pulse to invert upon reflection.

Now consider another case, where this time the pulse arrives at the end of a
string that is free to move vertically, as in Figure 16.13. The tension at the free end
is maintained by tying the string to a ring of negligible mass that is free to slide
vertically on a smooth post. Again the pulse is reflected, but this time it is not
inverted. As the pulse reaches the post, it exerts a force on the free end of the
string, causing the ring to accelerate upward. In the process, the ring would over-
shoot the height of the incoming pulse except that it is pulled back by the down-
ward component of the tension force. This ring movement produces a reflected
pulse that is not inverted, and whose amplitude is the same as that of the incoming
pulse.

Finally, we may have a situation in which the boundary is intermediate between
these two extreme cases, that is, one in which the boundary is neither rigid nor
free. In this case, part of the incident pulse is transmitted and part is reflected. For
instance, suppose a light string is attached to a heavier string as in Figure 16.14.
When a pulse traveling on the light string reaches the boundary between the two,
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FIGURE 16.14 (a) A pulse traveling to the right on a light string attached to a heavier string.
(b) Part of the incident pulse is reflected (and inverted), and part is transmitted to the
heavier string. (Note that the change in pulse width is not shown.)



