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Preface

Covering every aspect of Continuum Mechanics, this book brilliantly elucidates its concepts
and applications. Continuum mechanics is the base of Applied Mechanics. There are a
number of books on Continuum Mechanics emphasizing on the macro-scale mechanical
conduct of materials. Unlike traditional Continuum Mechanics books, this book provides
synopsis on the developments in some specific areas of Continuum Mechanics. This book
focuses primarily on the applications aspects. Energy materials and systems i.e. fuel cell
materials and electrodes, substance deportation and mechanical response/deformation
of plates, pipelines etc. have been covered under the applications described in this book.
Researchers from different fields will benefit from reading the mechanics approach to solve
engineering problems.

After months of intensive research and writing, this book is the end result of all who
devoted their time and efforts in the initiation and progress of this book. It will surely be
a source of reference in enhancing the required knowledge of the new developments in
the area. During the course of developing this book, certain measures such as accuracy,
authenticity and research focused analytical studies were given preference in order to
produce a comprehensive book in the area of study.

This book would not have been possible without the efforts of the authors and the publisher.
I extend my sincere thanks to them. Secondly, I express my gratitude to my family and
well-wishers. And most importantly, I thank my students for constantly expressing their
willingness and curiosity in enhancing their knowledge in the field, which encourages me
to take up further research projects for the advancement of the area.

Editor
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Spencer Operator and Applications:
From Continuum Mechanics
to Mathematical Physics

J.E. Pommaret
CERMICS, Ecole Nationale des Ponts et Chaussées,
France

1. Introduction

Let us revisit briefly the foundation of n-dimensional elasticity theory as it can be found today
in any textbook, restricting our study to n = 2 for simplicity. If x = (x!,x?) is a point in
the plane and & = (&'(x),&2(x)) is the displacement vector, lowering the indices by means
of the Euclidean metric, we may introduce the "small" deformation tensor € = (€;; = €j; =
(1/2)(9;¢; + 9j¢i)) with n(n+1)/2 = 3 (independent) components (e11,€12 = €21,€x). If
we study a part of a deformed body, for example a thin elastic plane sheet, by means of a
variational principle, we may introduce the local density of free energy g(e) = g@(e;j|i <
i) = @(en,€12,€2) and vary the total free energy F = [¢(e)dx with dx = dx! A dx? by
introducing ¢/ = 0¢/de;; for i < j in order to obtain 6F = [(01dey; + 0125€1; 4 0P b€, )dx.
Accordingly, the "decision" to define the stress tensor ¢ by a symmetric matrix with ¢'? =
o?! is purely artificial within such a variational principle. Indeed, the usual Cauchy device
(1828) assumes that each element of a boundary surface is acted on by a surface density of
force & with a linear dependence @ = (¢'"(x)n,) on the outward normal unit vector 7i =
(ny) and does not make any assumption on the stress tensor. It is only by an equilibrium
of forces and couples, namely the well known phenomenological static torsor equilibrium, that
one can "prove” the symmetry of . However, even if we assume this symmetry, we now
need the different summation o'idej; = '€y, + 2012015 + 0*25€x = 0'79,6¢;. An integration
by parts and a change of sign produce the volume integral [(9,0'")éZ;dx leading to the stress
equations 9,0 = 0. The classical approach to elasticity theory, based on invariant theory with respect
to the group of rigid motions, cannot therefore describe equilibrium of torsors by means of a variational
principle where the proper torsor concept is totally lacking.

There is another equivalent procedure dealing with a wvariational calculus with constraint.
Indeed, as we shall see in Section 7, the deformation tensor is not any symmetric tensor as
it must satisfy n?(n? — 1)/12 compatibility conditions (CC), that is only dy€11 + d11€22 —
2012612 = 0 when n = 2. In this case, introducing the Lagrange multiplier —¢ for convenience,
we have tovary [ (@(€) — p(0xn€11 + 011€22 — 2012€12) )dx for an arbitrary €. A double integration
by parts now provides the parametrization ¢'! = 93¢,0'? = ¢?! = —912¢,0%% = 9119 of
the stress equations by means of the Airy function ¢ and the formal adjoint of the CC, on the
condition to observe that we have in fact 201> = —2091,¢ as another way to understand the deep
meaning of the factor "2" in the summation. In arbitrary dimension, it just remains to notice
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that the above compatibility conditions are nothing else but the linearized Riemann tensor in
Riemannan geometry, a crucial mathematical tool in the theory of general relativity.

It follows that the only possibility to revisit the foundations of engineering and mathematical
physics is to use new mathematical methods, namely the theory of systems of partial
differential equations and Lie pseudogroups developped by D.C. Spencer and coworkers
during the period 1960-1975. In particular, Spencer invented the first order operator now
wearing his name in order to bring in a canonical way the formal study of systems of ordinary
differential (OD) or partial differential (PD) equations to that of equivalent first order systems.
However, despite its importance, the Spencer operator is rarely used in mathematics today and,
up to our knowledge, has never been used in engineering or mathematical physics. The main
reason for such a situation is that the existing papers, largely based on hand-written lecture
notes given by Spencer to his students (the author was among them in 1969) are quite technical
and the problem also lies in the only "accessible” book "Lie equations” he published in 1972
with A. Kumpera. Indeed, the reader can easily check by himself that the core of this book has
nothing to do with its introduction recalling known differential geometric concepts on which
most of physics is based today.

The first and technical purpose of this chapter, an extended version of a lecture at the second
workshop on Differential Equations by Algebraic Methods (DEAM2, february 9-11, 2011, Linz,
Austria), is to recall briefly its definition, both in the framework of systems of linear ordinary
or partial differential equations and in the framework of differential modules. The local theory
of Lie pseudogroups and the corresponding non-linear framework are also presented for the
first time in a rather elementary manner though it is a difficult task.

The second and central purpose is to prove that the use of the Spencer operator constitutes
the common secret of the three following famous books published about at the same time in the
beginning of the last century, though they do not seem to have anything in common at first
sight as they are successively dealing with the foundations of elasticity theory, commutative
algebra, electromagnetism (EM) and general relativity (GR):

[C] E. and F. COSSERAT: "Théorie des Corps Déformables", Hermann, Paris, 1909.
[M] ES. MACAULAY: "The Algebraic Theory of Modular Systems", Cambridge, 1916.
[W] H. WEYL: "Space, Time, Matter", Springer, Berlin, 1918 (1922, 1958; Dover, 1952).

Meanwhile we shall point out the striking importance of the second book for studying
identifiability in control theory. =~ We shall also obtain from the previous results the
group theoretical unification of finite elements in engineering sciences (elasticity, heat,
electromagnetism), solving the torsor problem and recovering in a purely mathematical
way known field-matter coupling phenomena (piezzoelectricity, photoelasticity, streaming
birefringence, viscosity, ...).

As a byproduct and though disturbing it may be, the third and perhaps essential purpose
is to prove that these unavoidable new differential and homological methods contradict the
existing mathematical foundations of both engineering (continuum mechanics, electromagnetism) and
mathematical (gauge theory, general relativity) physics.

Many explicit examples will illustate this chapter which is deliberately written in a rather
self-contained way to be accessible to a large audience, which does not mean that it is
elementary in view of the number of new concepts that must be patched together. However,
the reader must never forget that each formula appearing in this new general framework has
been used explicitly or implicitly in [C], [M] and [W] for a mechanical, mathematical or
physical purpose.
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2. From Lie groups to Lie pseudogroups

Evariste Galois (1811-1832) introduced the word "group" for the first time in 1830. Then the
group concept slowly passed from algebra (groups of permutations) to geometry (groups
of transformations). It is only in 1880 that Sophus Lie (1842-1899) studied the groups of
transformations depending on a finite number of parameters and now called Lie groups of
transformations. Let X be a manifold with local coordinates x = (x!,..,x") and G be a Lie
group, that is another manifold with local coordinates a = (al, ..., aP) called parameters with a
composition G x G — G : (a,b) — ab, an inverse G — G : a — a~!and an identity e € G

satisfying:
(ab)c = a(bc) = abe, aal=ala=e¢, ae =ea=a, Va,b,c € G

Definition 2.1. G is said to act on X if there isamap X x G — X : (x,a) = y = ax = f(x,a)
such that (ab)x = a(bx) = abx,Va,b € G,Vx € X and, for simplifying the notations, we shall use
global notations even if only local actions are existing. The set Gy = {a € G | ax = x} is called the
isotropy subgroup of G at x € X. The action is said to be effective ifax = x,Vx € X = a =e. A
subset S C X is said to be invariant under the action of G if aS C S,Va € G and the orbit of x € X is
the invariant subset Gx = {ax | a € G} C X. If G acts on two manifolds X and Y,amap f : X = Y
is said to be equivariant if f(ax) = af(x),Vx € X,Va € G.

For reasons that will become clear later on, it is often convenient to introduce the graph X x
G — X x X:(x,a) = (x,y = ax) of the action. In the product X x X, the first factor is called
the source while the second factor is called the target.

Definition 2.2. The action is said to be free if the graph is injective and transitive if the graph is
surjective. The action is said to be simply transitive if the graph is an isomorphism and X is said to be
a principal homogeneous space (PHS) for G.

In order to fix the notations, we quote without any proof the "Three Fundamental Theorems of
Lie" that will be of constant use in the sequel ([26]):

First fundamental theorem: The orbits x = f(xp,a) satisfy the system of PD equations
ox'/da’ = Gb(x)af,(a) with det(w) # 0. The vector fields 6, = 6,’;(x)ai are called infinitesimal
generators of the action and are linearly independent over the constants when the action is
effective.

If X is a manifold, we denote as usual by T = T(X) the tangent bundle of X, by T* = T*(X)
the cotangent bundle, by A"T* the bundle of r-forms and by S;T* the bundle of g-symmetric tensors.

More generally, let £ be a fibered manifold, that is a manifold with local coordinates (x!, y¥) for
i=1,.,nand k = 1,...,m simply denoted by (x,y), projection r : £ — X : (x,y) — (x) and
changes of local coordinates ¥ = ¢(x), 7 = (x,y). If £ and F are two fibered manifolds over
X with respective local coordinates (x,y) and (x,z), we denote by € x x F the fibered product of
& and F over X as the new fibered manifold over X with local coordinates (x,y,z). We denote
by f: X —= &£:(x) = (x,y = f(x)) aglobal section of £, that is a map such that 7t o f = idx but
local sections over an open set U C X may also be considered when needed. Under a change
of coordinates, a section transforms like f(¢(x)) = ¥(x, f(x)) and the derivatives transform
like:

1 1 1
L o9 = 35, 0) + S F A
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We may introduce new coordinates (x/, ¥, y¥) transforming like:

oxi
We shall denote by [;(€) the g-jet bundle of & with local coordinates (xf, yk, y;‘,yf-‘i,...) =
(x,y4) called jet coordinates and sections f; : (x) — (x, f¥(x), f¥(x), i’;(x),...) = (x,f3(x))

transforming like the sections jy(f) : (x) — (x,fk(x),aifk(x),a,-]-fk(x),...) = (% jg(f)(x))
where both f; and j, (f) are over the section f of £. Of course J;(£) is a fibered manifold over X

1 1
oig' () = 5 () + 5o .0

with projection 774 while J;+,(£) is a fibered manifold over J;(£) with projection n'q ",¥r > 0.

Definition 2.3. A system of order q on € is a fibered submanifold Ry C J4(£) and a solution of Ry
is a section f of € such that jq(f) is a section of Ry.

Definition 2.4. When the changes of coordinates have the linear form x = ¢(x),j = A(x)y, we say
that £ is a vector bundle over X and denote for simplicity a vector bundle and its set of sections by the
same capital letter E. When the changes of coordinates have the form ¥ = ¢(x), 7 = A(x)y + B(x)
we say that & is an affine bundle over X and we define the associated vector bundle E over X by the
local coordinates (x,v) changing like ¥ = ¢(x),7 = A(x)v.

Definition 2.5. If the tangent bundle T(E) has local coordinates (x,y,u,v) changing like i/ =
0;¢/ (x)u!, o = ax, (x y)u' + —'Ep (x,y)v*, we may introduce the vertical bundle V(E) C T(E)

as a vector bundle over £ with Ioml coordinates (x,y,v) obtained by setting u = 0 and changes

!
¥ = g—g;(x, y)vk. Of course, when & is an affine bundle with associated vector bundle E over X, we

have V(€) = € xx E.

For a later use, if £ is a fibered manifold over X and f is a section of £, we denote by f 1 (V(£))
the reciprocal image of V(&) by f as the vector bundle over X obtained when replacing (x,y,v)
by (x, f(x),v) in each chart. It is important to notice in variational calculus that a variation  f
of f is such that df(x), as a vertical vector field not necessary "small", is a section of this vector
bundle and that (f,Jf) is nothing else than a section of V(&) over X.

We now recall a few basic geometric concepts that will be constantly used. First of all, if
¢, € T, we define their bracket [Z,77] € T by the local formula ([¢, 7])'(x) = &"(x)orn'(x) —
11°(x)0s¢" (x) leading to the Jacobi identity (¢, [n,C]] + [n,(C,¢]] + (¢, [&n]] = O.Y&,n, € T
allowing to define a Lie algebra and to the useful formula [T(F)(&), (f)(r;)] T(f)([&n])
where T(f) : T(X) — T(Y) is the tangent mapping ofamap f : X — Y

Second fundamental theorem: If 0y, ..., 6, are the infinitesimal generators of the effective

action of a lie group G on X, then [99,90] = ¢jo0r where the cj, are the structure constants

of a Lie algebra of vector fields which can be 1dent1f1ed with G = T,(G).

When I = {ij < ... < i, } is a multi-index, we may set dx! = dx"! A ... Adx" for describing A" T*
and introduce the exterior derivative d : A'T* — A™HIT* : w = widx! = dw = 9w dx’ A dx!
with d2 = d o d = 0 in the Poincaré sequence:

AOT* Ay Al 4y a2+ 4, Ay anpx g
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The Lie derivative of an r-form with respect to a vector field { € T is the linear first order
operator £(&) linearly depending on ji(¢) and uniquely defined by the following three
properties:

L L@)f = &f = Faif,Vf € AOT* = C(X).
2. L(&)d = dL(&).
3. L(&)(a AB) = (L@)a) AP+ A (LE)B), Ve, p € AT,

It can be proved that £(&) = i(§)d + di({) where i({) is the interior multiplication (i(§)w);, i, =
&'wi,..i, and that [L(§), L()] = L(&) o L() — L) 0 L(&) = L([&,7]), V¢, € T.

Using crossed-derivatives in the PD equations of the First Fundamental Theorem and
introducing the family of 1-forms w® = w(a)da” both with the matrix « = w ! of right
invariant vector fields, we obtain the compatibility conditions (CC) expressed by the following
corollary where one must care about the sign used:

Corollary 2.1. One has the Maurer-Cartan (MC) equations dw"™ + ¢jowf A w” = 0 or the equivalent
relations [ap, ag] = cjy0tr.

Applying d to the MC equations and substituting, we obtain the integrability conditions (IC):
Third fundamental theorem For any Lie algebra G defined by structure constants satisfying :

A M A A _
c;[, -+ cgp =0, c},pcfn - clu,c’m B cwc;)‘(7 =0

one can construct an analytic group G such that G = T,(G).

Example 2.1. Considering the affine group of transformations of the real line y = a'x + a®, we obtain
01 = x0x,0; = 9x = [61,02] = —6; and thus w' = (1/a")da',w? = da® — (a%/a")da' = dw' =
0,dw? — w!' Aw? =0 & [0y, 4] = —ap with a; = a'd; + 420y, a3 = 9.

Only ten years later Lie discovered that the Lie groups of transformations are only particular
examples of a wider class of groups of transformations along the following definition where
aut(X) denotes the group of all local diffeomorphisms of X:

Definition 2.6. A Lie pseudogroup of transformations T C aut(X) is a group of transformations
solutions of a system of OD or PD equations such that, if y = f(x) and z = g(y) are two solutions,
called finite transformations, that can be composed, then z = go f(x) = h(x)and x = f~(y) = g(y)
are also solutions while y = x is a solution.

The underlying system may be nonlinear and of high order as we shall see later on. We shall
speak of an algebraic pseudogroup when the system is defined by differential polynomials that
is polynomials in the derivatives. In the case of Lie groups of transformations the system
is obtained by differentiating the action law y = f(x,a) with respect to x as many times as
necessary in order to eliminate the parameters. Looking for transformations "close" to the
identity, that is setting y = x + t¢(x) + ... when t < 1 is a small constant parameter and
passing to the limit t — 0, we may linearize the above nonlinear system of finite Lie equations in
order to obtain a linear system of infinitesimal Lie equations of the same order for vector fields.
Such a system has the property that, if §,# are two solutions, then [¢, #] is also a solution.
Accordingly, the set ® C T of solutions of this new system satifies [®,0] C © and can
therefore be considered as the Lie algebra of I".
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Though the collected works of Lie have been published by his student E. Engel at the end of
the 19" century, these ideas did not attract a large audience because the fashion in Europe
was analysis. Accordingly, at the beginning of the 20" century and for more than fifty years,
only two frenchmen tried to go further in the direction pioneered by Lie, namely Elie Cartan
(1869-1951) who is quite famous today and Ernest Vessiot (1865-1952) who is almost ignored
today, each one deliberately ignoring the other during his life for a precise reason that we now
explain with details as it will surprisingly constitute the heart of this chapter. (The author
is indebted to Prof. Maurice Janet (1888-1983), who was a personal friend of Vessiot, for the
many documents he gave him, partly published in [25]). Roughly, the idea of many people at
that time was to extend the work of Galois along the following scheme of increasing difficulty:

1) Galois theory ([34]): Algebraic equations and permutation groups.
2) Picard-Vessiot theory ([17]): OD equations and Lie groups.
3) Differential Galois theory ([24],[37]): PD equations and Lie pseudogroups.

In 1898 Jules Drach (1871-1941) got and published a thesis ([9]) with a jury made by Gaston
Darboux, Emile Picard and Henri Poincaré, the best leading mathematicians of that time.
However, despite the fact that it contains ideas quite in advance on his time such as the
concept of a "differential field" only introduced by J.-F. Ritt in 1930 ([31]), the jury did not
notice that the main central result was wrong: Cartan found the counterexamples, Vessiot
recognized the mistake, Paul Painlevé told it to Picard who agreed but Drach never wanted
to acknowledge this fact and was supported by the influent Emile Borel. As a byproduct,
everybody flew out of this "affair", never touching again the Galois theory. After publishing a
prize-winning paper in 1904 where he discovered for the first time that the differential Galois
theory must be a theory of (irreducible) PHS for algebraic pseudogroups, Vessiot remained
alone, trying during thirty years to correct the mistake of Drach that we finally corrected in
1983 ([24]).

3. Cartan versus Vessiot : The structure equations

We study first the work of Cartan which can be divided into two parts. The first part, for which
he invented exterior calculus, may be considered as a tentative to extend the MC equations
from Lie groups to Lie pseudogroups. The idea for that is to consider the system of order g4 and
its prolongations obtained by differentiating the equations as a way to know certain derivatives
called principal from all the other arbitrary ones called parametric in the sense of Janet ([13]).
Replacing the derivatives by jet coordinates, we may try to copy the procedure leading to
the MC equations by using a kind of "composition" and "inverse" on the jet coordinates. For
example, coming back to the last definition, we get successively:

oh _dgaf  9*h _d*gafof  agdf

ox  ayox’ 92  9yFoxox oyox2'”

Now if ¢ = f~! then go f = id and thus g%% = 1,... while the new identity id, = j,(id)
is made by the successive derivatives of y = x, namely (1,0,0,...). These awfully complicated
computations bring a lot of structure constants and have been so much superseded by the work
of Donald C. Spencer (1912-2001) ([11],[12],[18],[33]) that, in our opinion based on thirty years
of explicit computations, this tentative has only been used for classification problems and is
not useful for applications compared to the results of the next sections. In a single concluding
sentence, Cartan has not been able to "go down” to the base manifold X while Spencer did succeed

fifty years later.
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We shall now describe the second part with more details as it has been (and still is !) the crucial
tool used in both engineering (analytical and continuum mechanics) and mathematical (gauge
theory and general relativity) physics in an absolutely contradictory manner. We shall try to
use the least amount of mathematics in order to prepare the reader for the results presented
in the next sections. For this let us start with an elementary experiment that will link at once
continuum mechanics and gauge theory in an unusual way. Let us put a thin elastic rectilinear
rubber band along the x axis on a flat table and translate it along itself. The band will remain
identical as no deformation can be produced by this constant translation. However, if we
move each point continuously along the same direction but in a point depending way, for
example fixing one end and pulling on the other end, there will be of course a deformation of
the elastic band according to the Hooke law. It remains to notice that a constant translation can
be written in the form y = x + a® as in Example 2.1 while a point depending translation can be
written in the form y = x + a%(x) which is written in any textbook of continuum mechanics in
the form y = x + ¢(x) by introducing the displacement vector {. However nobody could even
imagine to make a! also point depending and to consider y = al(x)x + a*(x) as we shall do
in Example 7.2.We also notice that the movement of a rigid body in space may be written in
the form y = a(t)x + b(t) where now a(t) is a time depending orthogonal matrix and b(t) is
a time depending vector. What makes all the difference between the two examples is that the
group is acting on x in the first but not acting on t in the second. Finally, a point depending
rotation or dilatation is not accessible to intuition and the general theory must be done in the
following manner.

If X is a manifold and G is a lie group not acting necessarily on X, let us consider maps a :
X — G : (x) — (a(x)) or equivalently sections of the trivial (principal) bundle X x G over
X. If x 4 dx is a point of X close to x, then T(a) will provide a point a +da = a + g%dx
close to a on G. We may bring a back to e on G by acting on a with a™!, either on the left or
on the right, getting therefore a 1-form a~'da = A ordaa™! = B. Asaa! = e we also get
daa~! = —ada=' = —b~'db if we set b = a~! as a way to link A with B. When there is an
action y = ax, we have x = a~ly = by and thus dy = dax = daa~'y, a result leading through
the First Fundamental Theorem of Lie to the equivalent formulas:

a lda=A= (Af(x)dxi = —wX(b(x))a;b” (x)dx')

daa~' = B = (Bf (x)dx’' = wl(a(x))0;a° (x)dx")
Introducing the induced bracket [A, A](¢, 1) = [A(), A(y)] € G, V¢, € T, we may define
the 2-form dA — [A, A] = F € A’T* ® G by the local formula (care to the sign):
0;Af (x) — 9jA] (x) — c;aAf(x)A;’(x) = Fjj(x)
and obtain from the second fundamental theorem:
Theorem 3.1. There is a nonlinear gauge sequence:
MC

XxG— T*'®G — AT*®G
a —alda=A—dA—[A Al=F

Choosing a "close" to ¢, that is a(x) = e + tA(x) + ... and linearizing as usual, we obtain the
linear operatord : A°T*® G — AIT*® G : (AT(x)) — (9;A7(x)) leading to:
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Corollary 3.1. There is a linear gauge sequence:

ANT* 2G-S AT 06 -5 2T 06 % .. L A'T* G — 0

which is the tensor product by G of the Poincaré sequence:

Remark 3.1. When the physicists C.N. Yang and R.L. Mills created (non-abelian) gauge theory in
1954 ([381,1391), their work was based on these results which were the only ones known at that time,
the best mathematical reference being the well known book by S. Kobayashi and K. Nomizu ([15]). It
follows that the only possibility to describe elecromagnetism (EM) within this framework was to call
A the Yang-Mills potential and F the Yang-Mills field (a reason for choosing such notations) on the
condition to have dim(G) = 1in the abelian situation ¢ = 0 and to use a Lagrangian depending on F =
dA — [A, A] in the general case. Accordingly the idea was to select the unitary group U(1), namely
the unit circle in the complex plane with Lie algebra the tangent line to this circle at the unity (1,0). It
is however important to notice that the resulting Maxwell equations dF = 0 have no equivalent in the
non-abelian case ¢ # 0.

Just before Albert Einstein visited Paris in 1922, Cartan published many short Notes ([5])
announcing long papers ([6]) where he selected G to be the Lie group involved in the Poincaré
(conformal) group of space-time preserving (up to a function factor) the Minkowski metric
w = (dx")? + (dx?)? + (dx®)? — (dx*)? with x* = ct where c is the speed of light. In the
first case F is decomposed into two parts, the torsion as a 2-form with value in translations on
one side and the curvature as a 2-form with value in rotations on the other side. This result
was looking coherent at first sight with the Hilbert variational scheme of general relativity
(GR) introduced by Einstein in 1915 ([21],[38]) and leading to a Lagrangian depending on
F =dA — [A, A] as in the last remark.

In the meantime, Poincaré developped an invariant variational calculus ([22]) which has been
used again without any quotation, successively by G. Birkhoff and V. Arnold (compare [4],
205-216 with [2], 326, Th 2.1). A particular case is well known by any student in the analytical
mechanics of rigid bodies. Indeed, using standard notations, the movement of a rigid body is
described in a fixed Cartesian frame by the formula x(t) = a(t)xy + b(t) where a(t)isa3 x 3
time dependent orthogonal matrix (rotation) and b(t) a time depending vector (translation)
as we already said. Differentiating with respect to time by using a dot, the absolute speed is
v = %(t) = a(t)xo + b(t) and we obtain the relative speed a~(t)v = a1 (t)a(t)xo +a ' (t)b(t)
by projection in a frame fixed in the body. Having in mind Example 2.1, it must be noticed
that the so-called Eulerian speed v = v(x,t) = aa~'x + b — aa—'b only depends on the 1-form
B = (aa~!,b— aa—1b). The Lagrangian (kinetic energy in this case) is thus a quadratic function
of the 1-form A = (a~'4,a'b) where a—'ais a 3 x 3 skew symmetric time depending matrix.
Hence, "surprisingly", this result is not coherent at all with EM where the Lagrangian is the
quadratic expression (€/2)E2 — (1/2u)B? because the electric field E and the magnetic field B
are combined in the EM field F as a 2-form satisfying the first set of Maxwell equations dF = 0.
The dielectric constant € and the magnetic constant i are leading to the electric induction D=
¢E and the magnetic induction A = (1/)B in the second set of Maxwell equations. In view of
the existence of well known field-matter couplings such as piezoelectricity and photoelasticity
that will be described later on, such a situation is contradictory as it should lead to put on
equal footing 1-forms and 2-forms contrary to any unifying mathematical scheme but no other
substitute could have been provided at that time.
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Let us now turn to the other way proposed by Vessiot in 1903 ([36]) and 1904 ([37]). Our
purpose is only to sketch the main results that we have obtained in many books ([23-26], we
do not know other references) and to illustrate them by a series of specific examples, asking
the reader to imagine any link with what has been said.

1.

If £ = X x X, we shall denote by I, = Hq(X,X) the open subfibered manifold of

J(X x X) defined independently of the coordinate system by det(y¥) # 0 with source
projection ag : T1; — X @ (x,y,) — (x) and target projection g : Ty — X : (x,y5) — (y).
We shall sometimes introduce a copy Y of X with local coordinates (y) in order to avoid
any confusion between the source and the target manifolds. Let us start with a Lie
pseudogroup I' C aut(X) defined by a system R, C Tl; of order 4. In all the sequel
we shall suppose that the system is involutive (see next section) and that I" is transitive that
isVx,y € X,3f € I,y = f(x) or, equivalently, the map (ag, B4) : Rg — X x X : (x,y4) —
(x,y) is surjective.

. The Lie algebra ©® C T of infinitesimal transformations is then obtained by linearization,

setting y = x + t{(x) + ... and passing to the limit ¢ — 0 in order to obtain the linear
involutive system R; = id;'(V(Rq)) C J4(T) by reciprocal image with ® = {¢ €
T|jg(&) € Rq}-

. Passing from source to target, we may prolong the vertical infinitesimal transformations

1 =n*y) —a‘%( to the jet coordinates up to order g in order to obtain:

P I o%yk a;; 0
W)t +57Yi575 T ( Vivi + 5 7Yi) s T
ot oy iy T ayrap Y T oy k

where we have replaced j;(f)(x) by y,, each component beeing the "formal" derivative of
the previous one .

. As [©,0] C O, we may use the Frobenius theorem in order to find a generating

fundamental set of differential invariants {®(y,4)} up to order g which are such that
®7(7;) = ©"(yy) by using the chain rule for derivatives whenever 7 = g(y) € T acting
now on Y. Of course, in actual practice one must use sections of Ry instead of solutions but it
is only in section 6 that we shall see why the use of the Spencer operator will be crucial for
this purpose. Specializing the ®7 at id,(x) we obtain the Lie form ®(y;) = w™(x) of Ry.

. The main discovery of Vessiot, fifty years in advance, has been to notice that the

prolongation at order g4 of any horizontal vector field { = é’(x)— commutes with the
prolongation at order g of any vertical vector field y = 5* (y) W , exchanging therefore

the differential invariants. Keeping in mind the well known property of the Jacobian
determinant while passing to the finite point of view, any (local) transformation y = f(x)
can be lifted to a (local) transformation of the differential invariants between themselves of
the form u — A(u, ja(f)(x)) allowing to introduce a natural bundle F over X by patching
changes of coordinates ¥ = ¢(x), 7 = A(u, j;(¢)(x)). A section w of F is called a geometric
object or structure on X and transforms like @(f(x)) = A(w(x),jz(f)(x)) or simply
@ = jy(f)(w). This is a way to generalize vectors and tensors (§ = 1) or even connections
(9 = 2). As a byproduct we have I' = {f € aut(X)|®u(js(f)) = js(f) w) = w} as
a new way to write out the Lie form and we may say that I' preserves w. We also obtain
Ry = {fy € lfy Y(w) = w}. Coming back to the infinitesimal point of view and setting
fi = exp(tg) € aut(X),V¢ € T, we may define the ordinary Lie derivative with value in



