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FOREWORD BY ANDREW WILES '

[ had the great good fortune to have a high school mathematics teacher who
had studied number theory. At his suggestion I acquired a copy of the fourth
edition of Hardy and Wright’s marvellous book An Introduction to the The-
ory of Numbers. This, together with Davenport’s The Higher Arithmetic,
became my favourite introductory books in the subject. Scouring the pages
of the text for clues about the Fermat problem (I was already obsessed) I
learned for the first time about the real breadth of number theory. Only four
of the chapters in the middle of the book were about quadratic fields and
Diophantine equations, and much of the rest of the material was new to
me; Diophantine geometry, round numbers, Dirichlet’s theorem, continued
fractions, quaternions, reciprocity . .. The list went on and on.

The book became a starting point for ventures into the different branches
of the subject. For me the first quest was to find out more about alge-
braic number theory and Kummer’s theory in particular. The more analytic
parts did not have the same attraction then and did not really catch my
imagination until I had learned some complex analysis. Only then could I
appreciate the power of the zeta function. However, the book was always
there as a starting point which I could return to whenever I was intrigued
by a new piece of theory, sometimes many years later. Part of the success
of the book lay in its extensive notes and references which gave naviga-
tional hints for the inexperienced mathematician. This part of the book
has been updated and extended by Roger Heath-Brown so that a 21st-
century-student can profit from more recent discoveries and texts. This is
in the style of his wonderful commentary on Titchmarsh’s The Theory of
the Riemann Zeta Function. It will be an invaluable aid to the new reader
but it will also be a great pleasure to those who have read the book in
their youth, a bit like hearing the life stories of one’s erstwhile school
friends.

A final chapter has been added giving an account of the theory of ellip-
tic curves. Although this theory is not described in the original editions
(except for a brief reference in the notes to §13.6) it has proved to be crit-
ical in the study of Diophantine equations and of the Fermat equation in
particular. Through the Birch and Swinnerton-Dyer conjecture on the one
hand and through the extraordinary link with the Fermat equation on the
other it has become a central part of the number theorist’s life. It even
played a central role in the effective resolution of a famous class number
problem of Gauss. All this would have seemed absurdly improbable when



4 FOREWORD BY ANDREW WILES

the book was written. It is thus an appropriate ending for the new edition
to have a lucid exposition of this theory by Joe Silverman. Of course it is
only a quick sketch of the theory and the reader will surely be tempted to
devote many hours, if not the best part of a lifetime, to unravelling its many
mysteries. :

AJW.
January, 2008



PREFACE TO THE SIXTH EDITION

This sixth edition contains a considerable expansion of the end-of-chapter
notes. There have been many exciting developments since these were last
revised, which are now described in the notes. It is hoped that these will
provide an avenue leading the interested reader towards current research
areas. The notes for some chapters were written with the generous help of
other authorities. Professor D. Masser updated the material on Chapters
4 and 11, while Professor G.E. Andrews did the same for Chapter 19. A
substantial amount of new material was added to the notes for Chapter 21
by Professor T.D. Wooley, and a similar review of the notes for Chapter 24
was undertaken by Professor R. Hans-Glll We are naturally very grateful
to all of them for their assistance.

In addition, we have added a substantial new chapter, dealing with ellip-
tic curves. This subject, which was not mentioned in earlier editions, has
come to be such a central topic in the theory of numbers that it was felt
to deserve a full treatment. The material is naturally connected with the
original chapter on Diophantine Equations.

Finally, we have corrected a significant number of misprints in the
fifth edition. A large number of correspondents reported typographical or
mathematical errors, and we thank everyone who contributed in this way.

The proposal to produce this new edition originally came from Professors
John Maitland Wright and John Coates. We are very grateful for their
enthusiastic support.

D.R.H.-B.
JH.S.
September, 2007

D. R. Heath-Brown F K%K, FERAKEHE, KEER%S
=, ﬁ%‘JT19815ﬁ$ﬂl996fﬁﬁ{5f C BB SR M DG
(Berwick Prize) .

J. H. Silverman FZE%K, EEMPAREESZ, 1982404
KW LB, EH The Arithmetic of Elliptic Curves+ £ 445, k3%
AR L100% 5.



PREFACE TO THE FIFTH EDITION

The main changes in this edition are in the Notes at the end of each chapter.
I have sought to provide up-to-date references for the reader who wishes
to pursue a particular topic further and to present, both in the Notes and in
the text, a reasonably accurate account of the present state of knowledge.
For this I have been dependent on the relevant sections of those invaluable
publications, the Zentralblatt and the Mathematical Reviews. But I was
also greatly helped by several correspondents who suggested amendments
or answered queries. I am especially grateful to Professors J. W. S. Cassels
and H. Halberstam, each of whom supplied me at my request with a long
and most valuable list of suggestions and references.

There is a new, more transparent proof of Theorem 445 and an account of
my changed opinion about Theodorus’method in irrationals. To facilitate
the use of this edition for reference purposes, I have, so far as possible, kept
the page numbers unchanged. For this reason, | have added a short appendix
on recent progress in some aspects of the theory of prime numbers, rather
than insert the material in the appropriate places in the text.

E. M. W.
ABERDEEN
October 1978



PREFACE TO THE FIRST EDITION

This book has developed gradually from lectures delivered in a number
of universities during the last ten years, and, like many books which have
grown out of lectures, it has no very definite plan.

It is not in any sense (as an expert can see by reading the table of contents)
a systematic treatise on the theory of numbers. It does not even contain a
fully reasoned account of any one side of that many-sided theory, but is
an introduction, or a series of introductions, to almost all of these sides
in turn. We say something about each of a number of subjects which are
not usually combined in a single volume, and about some which are not
always regarded as forming part of the theory of numbers at all. Thus chs.
XII-XV belong to the ‘algebraic’ theory of numbers, Chs. XIX-XXI to
the ‘addictive’, and Ch. XXII to the ‘analytic’ theories; while Chs. III, XI,
XXIII, and XXIV deal with matters usually classified under the headings
of ‘geometry of numbers’ or ‘Diophantine approximation’. There is plenty
of variety in our programme, but very little depth; it is impossible, in 400
pages, to treat any of these many topics at all profoundly.

There are large gaps in the book which will be noticed at once by any
expert. The most conspicuous is the omission of any account of the theory of
quadratic forms. This theory has been developed more systematically than
any other part of the theory of numbers, and there are good discussions of
it in easily accessible books. We had to omit something, and this seemed to
us the part of the theory where we had the least to add to existing accounts.

We have often allowed out personal interests to decide out programme,
and have selected subjects less because of their importance (though most
of them are important enough) than because we found them congenial and
because other writers have left us something to say. Our first aim has been
to write an interesting book, and one unlike other books. We may have
succeeded at the price of too much eccentricity, or we may have failed; but
we can hardly have failed completely, the subject-matter being so attractive
that only extravagant incompetence could make it dull,

The book is written for mathematicians, but it does not demand any great
mathematical knowledge or technique. In the first eighteen chapters we
assume nothing that is not commonly taught in schools, and any intelligent
university student should find them comparatively easy reading. The last
six are more difficult, and in them we presuppose a little more, but nothing
beyond the content of the simpler university courses.

The title is the same as that of a very well-known book by Professor
L. E. Dickson (with which ours has little in common). We proposed at one
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time to change it to An introduction to arithmetic, a more novel and in some
ways a more appropriate title; but it was pointed out that this might lead to
misunderstandings about the content of the book.

A number of friends have helped us in the preparation of the book. Dr. H.
Heilbronn has read all of it both in manuscript and in print, and his criticisms
and suggestions have led to many very substantial improvements, the most
important of which are acknowledged in the text. Dr. H. S. A. Potter and
Dr. S. Wylie have read the proofs and helped us to remove many errors and
obscurities. They have also checked most of the references to the literature
in the notes at the ends of the chapters. Dr. H. Davenport and Dr. R. Rado
have also read parts of the book, and in particular the last chapter, which,
after their suggestions and Dr. Heilbronn’s, bears very little resemblance
to the original draft.

We have borrowed freely from the other books which are catalogued
on pp. 417-19 [pp. 596-9 in current 6th edn.], and especially from those
of Landau and Perron. To Landau in particular we, in common with all
serious students of the theory of numbers, owe a debt which we could
hardly overstate.

G.H. H.
E.M.W.

OXFORD
August 1938



REMARKS ON NOTATION
We borrow four symbols from formal logic, viz.
-»,5,3, €.
— is to be read as ‘implies’. Thus
llm —I|ln (p.2)

means ‘ “/ is a divisor of m” implies “/ is a divisor of n
same thing, ‘if / divides m then / divides »’; and

bla.c|b— cla (p.1)

means ‘if b divides a and ¢ divides b then ¢ divides a’.

222

, or, what is the

= is to be read ‘is equivalent to’. Thus
m|ka—ka = mj|la—ad (p.6])

means that the assertions ‘m divides ka—ka’’ and ‘m; divides a—a’” are
equivalent; either implies the other.

These two symbols must be distinguished carefully from — (tends to)
and = (is congruent to). There can hardly be any misunderstanding, since
— and = are always relations between propositions.

3 is to be read as ‘there is an’. Thus

3l 1 <l <m.llm (p.2)

means ‘there is an / such that (1) 1 < / < m and (i1) / divides m’.
€ is the relation of a member of a class to the class. Thus

meS.neS— (mxtn) €S (p.23)

means ‘if m and »n are members of S then m + n and m — »n are members
of §°.

A star affixed to the number of a theorem (e.g. Theorem 15*) means that
the proof of the theorem is too difficult to be included in the book. It is not
affixed to theorems which are not proved but may be proved by arguments
similar to those used in the text.
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