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PREFACE

Our goal in writing this book is to describe matrix theory from a geometric, physical
point of view. The beauty of matrices is that they can express so many things in
a compact, suggestive vernacular. The drudgery of matrices lies in the meticulous
computation of the entries. We think matrices are beautiful.

So we try to describe each matrix operation pictorially, and squeeze as much infor-
mation out of this picture as we can before we turn it over to the computer for number
crunching.

Of course we want to be the computer’s master, not its vassal; we want to know
what the computer is doing. So we have interspersed our narrative with glimpses of the
computational issues that lurk behind the symbology.

Part 1. The initial hurdle that a matrix textbook author has to face is the exposition of
Gauss elimination. Some readers will be seeing this for the first time, and it is of prime
importance to spell out all the details of the algorithm. But students who have acquired
familiarity with the basics of solving systems of equations in high school need to be
stimulated occasionally to keep them awake during this tedious (in their eyes) review.
In Part I, we try to pique the interests of the latter by inserting tidbits of information
that would not have occurred to them, such as operation counts and computer timing,
pivoting, complex coefficients, parametrized solution descriptions of underdetermined
systems, and the logical pitfalls that can arise when one fails to adhere strictly to Gauss’s
instructions.

The introduction of matrix formulations is heralded both as a notational shorthand
and as a quantifier of physical operations such as rotations, projections, reflections,
and Gauss’s row reductions. Inverses are studied first in this operator context before
addressing them computationally. The determinant is cast in its proper light as an
important concept in theory, but a cumbersome practical tool.
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Readers are guided to explore projects involving LU factorizations, the matrix
aspects of finite difference modeling, Kirchhoff’s circuit laws, GPS systems, and fixed
point methods.

Part II. We show how the vector space concepts supply an orderly organizational
structure for the capabilities acquired in Part I. The many facets of orthogonality are
stressed. To maintain computational perspective, a bit of attention is directed to the
numerical issues of rank fragility and error control through norm preservation. Projects
include rotational kinematics, Householder implementation of QR factorizations, and
the infinite dimensional matrices arising in Haar wavelet formulations.

Part III. We devote a lot of print to physical visualizations of eigenvectors—for
mirror reflections, rotations, row reductions, circulant matrices—before turning to the
tedious issue of their calculation via the characteristic polynomial. Similarity transfor-
mations are viewed as alternative interpretations of a matrix operator; the associated
theorems address its basis-free descriptors. Diagonalization is heralded as a holy grail,
facilitating scads of algebraic manipulations such as inversion, root extraction, and
power series evaluation. A physical experiment illustrating the stability/instability of
principal axis rotations is employed to stimulate insight into quadratic forms.

Schur decomposition, though ponderous, provides a valuable instrument for under-
standing the orthogonal diagonalizability of normal matrices, as well as the Cayley—
Hamilton theorem.

Thanks to invaluable input from our colleague Michael Lachance, Part III also pro-
vides a transparent exposition of the properties and applications of the singular value
decomposition, including rank reduction and the pseudoinverse.

The practical futility of eigenvector calculation through the characteristic polyno-
mial is outlined in a section devoted to a bird’s-eye perspective of the QR algorithm.
The role of luck in its implementation, as well as in the occurrence of defective matrices,
is addressed.

Finally, we describe the role of matrices in the solution of linear systems of differen-
tial equations with constant coefficients, via the matrix exponential. It can be mastered
before the reader has taken a course in differential equations, thanks to the analogy
with the simple equation of radioactive decay. We delineate the properties of the matrix
exponential and briefly survey the issues involved in its computation.

The interesting question here (in theory, at least) is the exponential of a defec-
tive matrix. Although we direct readers elsewhere for a rigorous proof of the Jordan
decomposition theorem, we work out the format of the resulting exponential. Many
authors ignore, mislead, or confuse their readers in the calculation of the generalized
eigenvector Jordan chains of a defective matrix, and we describe a straightforward and
foolproof procedure for this task. The alternative calculation of the matrix exponential,
based on the primary decomposition theorem and forgoing the Jordan chains, is also
presented.
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Group projects for Part III address positive definite matrices, Hessenberg forms, the
discrete Fourier transform, and advanced aspects of the singular value decomposition.
Each part includes summaries, review problems, and technical writing exercises.

EDWARD BARRY SAFF ARTHUR DAVID SNIDER
Vanderbilt University University of South Florida
edward.b.saff @ vanderbilt.edu snider @usf.edu
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PART I

INTRODUCTION: THREE EXAMPLES

Antarctic explorers face a problem that the rest of us wish we had. They need to con-
sume lots of calories to keep their bodies warm. To ensure sufficient caloric intake
during an upcoming 10-week expedition, a dietician wants her team to consume
2300 ounces of milk chocolate and 1100 ounces of almonds. Her outfitter can sup-
ply her with chocolate almond bars, each containing 1 ounce of milk chocolate and
0.4 ounces of almonds, for $1.50 apiece, and he can supply bags of chocolate-covered
almonds, each containing 2.75 ounces of chocolate and 2 ounces of almonds, for $3.75
each. (For convenience, assume that she can purchase either item in fractional quanti-
ties.) How many chocolate bars and covered almonds should she buy to meet the dietary
requirements? How much does it cost?

If the dietician orders x; chocolate bars and x, covered almonds, she has 1x; + 2.75x;
ounces of chocolate, and she requires 2300 ounces, so

Lx; + 2.75x; = 2300. (1)
Similarly, the almond requirement is
0.4x; + 2x, = 1100. (2)

You’re familiar with several methods of solving simultaneous equations like (1) and
(2): graphing them, substituting one into another, possibly even using determinants.
You can calculate the solution to be x; = 1750 bars of chocolate and x, = 200 bags of
almonds at a cost of $1.50x; + $3.75x, = $3375.00.

Fundamentals of Matrix Analysis with Applications,
First Edition. Edward Barry Saff and Arthur David Snider.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.



2 PART I INTRODUCTION: THREE EXAMPLES

But did you see that for $238.63 less, she can meet or exceed the caloric requirements
by purchasing 836.36. . . bags of almonds and no chocolate bars? We’ll explore this in
Problem 20, Exercises 1.3. Simultaneous equations, and the linear algebra they spawn,
contain a richness that will occupy us for the entire book.

Another surprising illustration of the variety of phenomena that can occur arises in
the study of differential equations.

Two differentiations of the function cos ¢t merely result in a change of sign; in other
words, x(f) = cost solves the second-order differential equation x” = —x. Another
solution is sin ¢, and it is easily verified that every combination of the form

x(t) = ¢ cost + ¢y sint,

where ¢ and ¢, are arbitrary constants, is a solution. Find values of the constants (if
possible) so that x(7) meets the following specifications:

x(0) =x(n/2) = 4; 3
x(0) = x(m) = 4; )
x(0) = 4; x(7) = —4. ()
In most differential equations textbooks, it is shown that solutions to x”" = —x

can be visualized as vibratory motions of a mass connected to a spring, as depicted
in Figure I.1. So we can interpret our task as asking if the solutions can be timed so
that they pass through specified positions at specified times. This is an example of
a boundary value problem for the differential equation. We shall show that the three
specifications lead to entirely different results.

Evaluation of the trigonometric functions in the expression x(¢) = ¢ cost+ ¢, sint
reveals that for the conditions (3) we require

cy (l)+C2 : (0) =4
C]'(0)+C2'(1):4 (3/)
with the obvious solution ¢; = 4, ¢; = 4. The combination x(r) = 4cost + 4sint

meets the specifications, and in fact, it is the only such combination to do so.

Fig. 1.1 Mass-spring oscillator.
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Conditions (4) require that

Cl'(1)+C2'(0) 4
4, )

c1+(=1)+¢2-(0)

demanding that ¢, be equal both to 4 and to —4. The specifications are incompatible,
so no solution x(z) can satisfy (4).
The requirements of system (5) are

c1-(1)+cy-(0) =4,
¢ (=1)+c-(0) = —4. 5"

Both equations demand that ¢; equals 4, but no restrictions at all are placed on c,. Thus
there are infinite number of solutions of the form

x(t) = 4cost+cysint.

Requirements (1, 2) and (3/, 4', 5') are examples of systems of linear algebraic
equations, and although these particular cases are quite trivial to analyze, they demon-
strate the varieties of solution categories that are possible. We can gain some perspective
of the complexity of this topic by looking at another application governed by a linear
system, namely, Computerized Axial Tomography (CAT).

The goal of a “CAT” scan is to employ radiation transmission measurements to con-
struct a map of flesh density in a cross section of the human body. Figure 1.2 shows the
final resuls of a scan through a patient’s midsection; experts can detect the presence of
cancer tumors by noting unusual variations in the density.

Emitters —»
|

Chamber #1 | Chamber #2 pr
Chamber #3 Chamber #4 #2
#3 #4 <+ Detectors

Fig. 1.2 Simplified CAT scan model.
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A simplified version of the technology is illustrated in Figure 1.2. The stomach is
modeled very crudely as an assemblage of four chambers, each with its own density.
(An effective three-dimensional model for detection of tiny tumors would require mil-
lions of chambers.) A fixed dose of radiation is applied at each of the four indicated
emitter locations in turn, and the amounts of radiation measured at the four detectors are
recorded. We want to deduce, from this data, the flesh densities of the four subsections.

Now each chamber transmits a fraction r; of the radiation that strikes it. Thus if a unit
dose of radiation is discharged by emitter #1, a fraction r of it is transmitted through
chamber #1 to chamber #2, and a fraction r, of that is subsequently transmitted to
detector #1. From biochemistry we can determine the flesh densities if we can find the
transmission coefficients r;.

So if, say, detector #1 measures a radiation intensity of 50%, and detectors #2, #3,
and #4 measure intensities of 60%, 70%, and 55% respectively, then the following
equations hold:

rir; = 0.50; r3ry = 0.60; rirs = 0.70; rprg = 0.55.

By taking logarithms of both sides of these equations and setting x; = In r;, we find

X1 +x =1n0.50

x3 +x4 = In0.60

X1 + X3 =1In0.70
X2+ x4 =1n0.55, (6)

which is a system of linear algebraic equations similar to (1, 2) and (3', 4’, 5’). But the
efficient solution of (6) is much more daunting—awesome, in fact, when one considers
that a realistic model comprises over 10° equations, and that it may possess no solutions,
an infinity of solutions, or one unique solution.

In the first few chapters of this book, we will see how the basic tool of lin-
ear algebra—namely, the matrix—can be used to provide an efficient and systematic
algorithm for analyzing and solving such systems. Indeed, matrices are employed in vir-
tually every academic discipline to formulate and analyze questions of a quantitative
nature. Furthermore, in Chapter Seven, we will study how linear algebra also facili-
tates the description of the underlying structure of the solutions of linear differential
equations.



