NORTH-HOLLAND MATHEMATICAL LIBRARY

C*-Algebras Volume 1: Banach Spaces

C. Constantinescu

C*-Algebras

Volume 1: Banach Spaces

Corneliu Constantinescu

Departement Mathematik, ETH Zürich CH-8092 Zürich Switzerland

2001 ELSEVIER Amsterdam - London - New York - Oxford - Paris - Shannon - Tokyo ELSEVIER SCIENCE B.V. Sara Burgerhartstraat 25 P.O. Box 211, 1000 AE Amsterdam, The Netherlands

© 2001 Elsevier Science B.V. All rights reserved.

This work is protected under copyright by Elsevier Science, and the following terms and conditions apply to its use:

Photocopying

Single photocopies of single chapters may be made for personal use as allowed by national copyright laws. Permission of the Publisher and payment of a fee is required for all other photocopying, including multiple or systematic copying, copying for advertising or promotional purposes, resale, and all forms of document delivery. Special rates are available for educational institutions that wish to make photocopies for non-profit educational classroom use.

Permissions may be sought directly from Elsevier Science Global Rights Department, PO Box 800, Oxford OX5 1DX, UK; phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.co.uk. You may also contact Global Rights directly through Elsevier's home page (http://www.elsevier.nl), by selecting 'Obtaining Permissions'.

In the USA, users may clear permissions and make payments through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA; phone: (+1) (978) 7508400, fax: (+1) (978) 7504744, and in the UK through the Copyright Licensing Agency Rapid Clearance Service (CLARCS), 90 Tottenham Court Road, London W1P 0LP, UK; phone: (+44) 207 631 5555; fax: (+44) 207 631 5500. Other countries may have a local reprographic rights agency for payments.

Derivative Works

Tables of contents may be reproduced for internal circulation, but permission of Elsevier Science is required for external resale or distribution of such material.

Permission of the Publisher is required for all other derivative works, including compilations and translations.

Electronic Storage or Usage

Permission of the Publisher is required to store or use electronically any material contained in this work, including any chapter or part of a chapter.

Except as outlined above, no part of this work may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the Publisher. Address permissions requests to: Elsevier Science Global Rights Department, at the mail, fax and e-mail addresses noted above.

Notice

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made.

First edition 2001

Library of Congress Cataloging in Publication Data A catalog record from the Library of Congress has been applied for.

ISBN (this volume):

0 444 50749 3

ISBN (5 volume set):

0 444 50758 2

Series ISSN:

0924 6509

 [⊕] The paper used in this publication meets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Paper) Printed in The Netherlands.

C*-ALGEBRAS

VOLUME 1: BANACH SPACES

North-Holland Mathematical Library

Board of Honorary Editors:

M. Artin, H. Bass, J. Eells, W. Feit, P.J. Freyd, F.W. Gehring, H. Halberstam, L.V. Hörmander, J.H.B. Kemperman, W.A.J.Luxemburg, F. Peterson, I.M. Singer and A.C. Zaanen

Board of Advisory Editors:

A. Björner, R.H. Dijkgraaf, A. Dimca, A.S. Dow, J.J. Duistermaat, E. Looijenga, J.P. May, I. Moerdijk, S.M. Mori, J.P. Palis, A. Schrijver, J. Sjöstrand, J.H.M. Steenbrink, F. Takens and J. van Mill

VOLUME 58

ELSEVIER Amsterdam - London - New York - Oxford - Paris - Shannon - Tokyo

Preface

Functional analysis plays an important role in the program of studies at the Swiss Federal Institute of Technology. At present, courses entitled Functional Analysis I and II are taken during the fifth and sixth semester, respectively. I have taught these courses several times and after a while typewritten lecture notes resulted that were distributed to the students. During the academic year 1987/88, I was fortunate enough to have an eager enthusiastic group of students that I had already encountered previously in other lecture courses. These students wanted to learn more in the area and asked me to design a continuation of the courses. Accordlingly, I proceeded during the academic year, following, with a series of special lectures, Functional Analysis III and IV, for which I again distributed typewritten lecture notes. At the end I found that there had accumulated a mass of textual material, and I asked myself if I should not publish it in the form of a book. Unfortunately, I realized that the two special lecture series (they had been given only once) had been badly organized and contained material that should have been included in the first two portions. And so I came to the conclusion that I should write everything anew - and if at all - then preferably in English. Little did I realize what I was letting myself in for! The number of pages grew almost impercepetibly and at the end it had more than doubled. Aslo, the English language turned out to be a stumbling block for me; I would like to take this opportunity to thank Prof. Imre Bokor and Prof. Edgar Reich for their help in this regard. Above all I must thank Mrs. Barbara Aquilino, who wrote, first a WordMARCTM, and then a LaTEXTM version with great competence, angelic patience, and utter devotion, in spite of illness. My thanks also go to the Swiss Federal Institute of Technology that generously provided the infrastructure for this extensive enterprise and to my colleagues who showed their understanding for it.

Corneliu Constantinescu

Introduction

This book has evolved from the lecture course on Functional Analysis I had given several times at the ETH. The text has a strict logical order, in the style of "Definiton – Theorem – Proof – Example – Exercises". The proofs are rather thorough and there are many examples.

The first part of the book (the first three chapters, resp. the first two volumes) is devoted to the theory of Banach spaces in the most general sense of the term. The purpose of the first chapter (resp. first volume) is to introduce those results on Banach spaces which are used later or which are closely connected with the book. It therefore only contains a small part of the theory, and several results are stated (and proved) in a diluted form. The second chapter (which together with Chapter 3 makes the second volume) deals with Banach algebras (and involutive Banach algebras), which constitute the main topic of the first part of the book. The third chapter deals with compact operators on Banach spaces and linear (ordinary and partial) differential equations – applications of the theory of Banach algebras.

The second part of the book (the last four chapters, resp. the last three volumes) is devoted to the theory of Hilbert spaces, once again in the general sense of the term. It begins with a chapter (Chapter 4, resp. Volume 3) on the theory of C^* -algebras and W^* -algebras which are essentially the focus of the book. Chapter 5 (resp. Volume 4) treats Hilbert spaces for which we had no need earlier. It contains the representation theorems, i.e. the theorems on isometries between abstract C^* -algebras and the concrete C^* -algebras of operators on Hilbert spaces. Chapter 6 (which together with Chapter 7 makes Volume 5) presents the theory of \mathcal{L}^p -spaces of operators, its application to the self-adjoint linear (ordinary and partial) differential equations, and the von Neumann algebras. Finally, Chapter 7 presents examples of C^* -algebras defined with the aid of groups, in particular the Clifford algebras. Many important domains of C^* -algebras are ignored in the present book. It should be emphasized that the whole theory is constructed in parallel for the real and for the complex numbers, i.e. the C^* -algebras are real or complex.

In addition to the above (vertical) structure of the book, there is also a second (horizontal) division. It consists of a main strand, eight branches, and additional material. The results belonging to the main strand are marked with (0). Logically speaking, a reader could restrict himself/herself to these and ignore the rest. Results on the eight subsidiary branches are marked with (1), (2), (3), (4), (5), (6), (7), and (8). The key is

- 1. Infinite Matrices
- 2. Banach Categories
- 3. Nuclear Maps
- 4. Locally Compact Groups
- 5. Differential Equations
- 6. Laurent Series
- 7. Clifford Algebras
- 8. Hilbert C^* -Modules

These are (logically) independent of each other, but all depend on the main strand. Finally, the results which belong to the additional material have no marking and – from a logical perspective – may be ignored. So the reader can shorten for himself/herself this very long book using the above marks. Also, since the proofs are given with almost all references, it is possible to get into the book at any level and not to read it linearly.

We assume that the reader is familiar with classical analysis and has rudimentary knowledge of set theory, linear algebra, point–set topology, and integration theory. The book addresses itself mainly to mathematicians, or to physicists interested in C^* -algebras.

I would like to apologize for any omissions in citations occasioned by the fact that my acquaintance with the history of functional analysis is, unfortunately, very restricted. For this history we recommand the following texts.

- BIRKHOFF, G. and KREYSZIG, E., The Establishment of Functional Analysis, Historia Mathematica 11 (1984), 258–321.
- 2. BOURBAKI, N., Elements of the History of Mathematics, (21. Topological Vector Spaces), Springer-Verlag (1994).
- 3. DIEUDONNÉ, J., History of Functional Analysis, North-Holland (1981).
- 4. DIEUDONNÉ, J., A Panorama of Pure Mathematics (Chapter C III: Spectral Theory of Operators), Academic Press (1982).
- HEUSER, H., Funktionalanalysis, 2. Auflage (Kapitel XIX: Ein Blick auf die werdende Functionalanalysis), Teubner (1986), 3. Auflage (1992).
- KADISON, R.V., Operator Algebras, the First Forty Years, in: Proceedings of Symposia in Pure Mathematics 38 I (1982), 1–18.
- MONNA, A.F., Functional Analysis in Historical Perspective, John Whiley & Sons (1973).

8. STEEN, L.A., Highlights in the History of Spectral Theory, Amer. Math. Monthly 80 (1973), 359–382.

There is no shortage of excellent books on C^* -algebras. Nevertheless, we hope that this book will be also of some utility to the mathematics commutity.

	Intro	duction	n
	Som	e Notat	tion and Terminology
1	Bana	ach Spa	ces
	1.1	Norme	ed Spaces
		1.1.1	General Results
		1.1.2	Some Standard Examples
		1.1.3	Minkowski's Theorem
		1.1.4	Locally Compact Normed Spaces
		1.1.5	Products of Normed Spaces
		1.1.6	Summable Families
			Exercises
	1.2	Opera	tors
		1.2.1	General Results 61
		1.2.2	Standard Examples
		1.2.3	Infinite Matrices
		1.2.4	Quotient Spaces
		1.2.5	Complemented Subspaces
		1.2.6	The Topology of Pointwise Convergence
		1.2.7	Convex Sets
		1.2.8	The Alaoglu–Bourbaki Theorem
		1.2.9	Bilinear Maps
			Exercises
	1.3	The H	ahn-Banach Theorem
		1.3.1	The Banach Theorem
		1.3.2	Examples in Measure Theory
		1.3.3	The Hahn–Banach Theorem
		1.3.4	The Transpose of an Operator

viii Table of Contents

	1.3.5	Polar Sets	199
	1.3.6	The Bidual	211
	1.3.7	The Krein-Šmulian Theorem	228
	1.3.8	Reflexive Spaces	240
	1.3.9	Completion of Normed Spaces	245
	1.3.10	Analytic Functions	246
		Exercises	254
1.4	Applic	ations of Baire's Theorem	256
	1.4.1	The Banach-Steinhaus Theorem	256
	1.4.2	Open Mapping Principle	264
		Exercises	280
1.5	Banac	h Categories	281
	1.5.1	Definitions	281
	1.5.2	Functors	288
1.6	Nuclea	ar Maps	308
	1.6.1	General Results	308
	1.6.2	Examples	322
1.7	Ordere	ed Banach spaces	334
	1.7.1	Ordered normed spaces	334
	1.7.2	Order Continuity	340
Nam	ie Index		357
Sub	ject Ind	ex	359
Sym	bol Ind	ex	371

Contents of All Volumes

	Intro	oduction	1
	Som	e Notat	ion and Terminology
1	Bana	ach Spa	ces
	1.1	Norme	ed Spaces
		1.1.1	General Results
		1.1.2	Some Standard Examples
		1.1.3	Minkowski's Theorem
		1.1.4	Locally Compact Normed Spaces
		1.1.5	Products of Normed Spaces
		1.1.6	Summable Families
			Exercises
	1.2	Opera	tors
		1.2.1	General Results 61
		1.2.2	Standard Examples
		1.2.3	Infinite Matrices
		1.2.4	Quotient Spaces
		1.2.5	Complemented Subspaces
		1.2.6	The Topology of Pointwise Convergence
		1.2.7	Convex Sets
		1.2.8	The Alaoglu–Bourbaki Theorem
		1.2.9	Bilinear Maps
		9	Exercises
	1.3	The H	Jahn-Banach Theorem
		1.3.1	The Banach Theorem
		1.3.2	Examples in Measure Theory
		1.3.3	The Hahn–Banach Theorem
		131	The Transpose of an Operator

x Table of Contents

	1.3.5	Polar Sets	199
	1.3.6	The Bidual	211
	1.3.7	The Krein-Šmulian Theorem	228
	1.3.8	Reflexive Spaces	240
	1.3.9	Completion of Normed Spaces	245
	1.3.10	Analytic Functions	246
		Exercises	254
1.4	Applic	ations of Baire's Theorem	256
	1.4.1	The Banach–Steinhaus Theorem	256
	1.4.2	Open Mapping Principle	264
		Exercises	280
1.5	Banacl	a Categories	281
	1.5.1	Definitions	281
	1.5.2	Functors	288
1.6	Nuclea	r Maps	308
	1.6.1	General Results	308
	1.6.2	Examples	322
1.7	Ordere	d Banach spaces	334
	1.7.1	Ordered normed spaces	334
	1.7.2	Order Continuity	340
Nam	ne Index		357
Subj	ect Ind	ex	359
Sym	hol Ind	ov.	371

	Intro	oductio	n xix
2	Ban	ach Alg	ebras
	2.1	Algebr	ras
		2.1.1	General Results
		2.1.2	Invertible Elements
		2.1.3	The Spectrum
		2.1.4	Standard Examples
		2.1.5	Complexification of Algebras
			Exercises
	2.2	Norme	ed Algebras
		2.2.1	General Results
		2.2.2	The Standard Examples
		2.2.3	The Exponential Function and the Neumann Series 114
		2.2.4	Invertible Elements of Unital Banach Algebras 125
		2.2.5	The Theorems of Riesz and Gelfand
		2.2.6	Poles of Resolvents
		2.2.7	Modules
			Exercises
	2.3	Involu	tive Banach Algebras 201
		2.3.1	Involutive Algebras
		2.3.2	Involutive Banach Algebras
		2.3.3	Sesquilinear Forms
		2.3.4	Positive Linear Forms
		2.3.5	The State Space
		2.3.6	Involutive Modules
			Exercises
	2.4	Gelfan	d Algebras
		2.4.1	The Gelfand Transform
		2.4.2	Involutive Gelfand Algebras

xii Table of Contents

		2.4.3	Examples
		2.4.4	Locally Compact Additive Groups
		2.4.5	Examples
		2.4.6	The Fourier Transform
			Exercises
Vision	-		perators 399
3	Con		perators
	3.1	The G	eneral Theory
		3.1.1	General Results
		3.1.2	Examples
		3.1.3	Fredholm Operators
		3.1.4	Point Spectrum
		3.1.5	Spectrum of a Compact Operator 477
		3.1.6	Integral Operators
			Exercises
	3.2	Linear	Differential Equations
		3.2.1	Boundary Value Problems for Differential Equations 518
		3.2.2	Supplementary Results
		3.2.3	Linear Partial Differential Equations 549
			Exercises
	Nan	ne Inde	к
	G 1		569
	Sub	ject Ind	lex
	Syn	nbol Ind	ex

	Intr	oductio	on	xix
4	C^*	Algebra	as	3
	4.1	The C	General Theory	3
		4.1.1	General Results	4
		4.1.2	The Symmetry of C^* -Algebra	30
		4.1.3	Functional calculus in C^* -Algebras	56
		4.1.4	The Theorem of Fuglede-Putnam	75
	4.2	The C	Order Relation	92
		4.2.1	Definition and General Properties	92
		4.2.3	Examples	116
		4.2.4	Powers of Positive Elements	123
		4.2.5	The Modulus	143
		4.2.6	Ideals and Quotients of C^* -Algebras	150
		4.2.7	The Ordered Set of Orthogonal Projections	162
		4.2.8	Approximate Unit	178
	4.3	Supple	ementary Results on C^* -Algebras	208
		4.3.1	The Exterior Multiplication	208
		4.3.2	Order Complete C^* -Algebras	215
		4.3.3	The Carrier	243
		4.3.4	Hereditary C^* -Subalgebras	263
		4.3.5	Simple C^* -algebras	276
		4.3.6	Supplementary Results Concerning Complexification	286
	4.4	W^* -A	llgebras	297
		4.4.1	General Properties	297
		4.4.2	F as an E -submodule of E'	309
		4.4.3	Polar Representation	335
		4.4.4	W^* –Homomorphisms	361
	Nan	ne Inde	x	385

civ	Table of	Content

Subject Index				1.			٠					•	7 4 1.	٠	ner	ï		50)	•	÷	•	ě		٠	÷	388
Symbol Index			×	(a)	×	ž	•	٠	×	•	ķ			į	•		ě	1	¥				101		,	411