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This updated edition is intended for a one- or two-term introductory course in discrete
mathematics, based on my experience in teaching this course over many years and
requests from users of previous editions. Formal mathematics prerequisites are minimal;
calculus is not required. There are no computer science prerequisites. The book includes
examples, exercises, figures, tables, sections on problem-solving, sections containing
problem-solving tips, section reviews, notes, chapter reviews, self-tests, and computer
exercises to help the reader master introductory discrete mathematics. In addition, an
Instructor’s Guide and website are available.

In the early 1980s there were few textbooks appropriate for an introductory course
in discrete mathematics. However, there was a need for a course that extended students’
mathematical maturity and ability to deal with abstraction, which also included use-
ful topics such as combinatorics, algorithms, and graphs. The original edition of this
book (1984) addressed this need and significantly influenced the development of dis-
crete mathematics courses. Subsequently, discrete mathematics courses were endorsed
by many groups for several different audiences, including mathematics and computer
science majors. A panel of the Mathematical Association of America (MAA) endorsed
a year-long course in discrete mathematics. The Educational Activities Board of the
Institute of Electrical and Electronics Engineers (IEEE) recommended a freshman dis-
crete mathematics course. The Association for Computing Machinery (ACM) and IEEE
accreditation guidelines mandated a discrete mathematics course. This edition, like its
predecessors, includes topics such as algorithms, combinatorics, sets, functions, and
mathematical induction endorsed by these groups. It also addresses understanding and
constructing proofs and, generally, expanding mathematical maturity.

Logic and Proofs Changes

The changes in this book, the seventh edition, result from comments and requests from
numerous users and reviewers of previous editions of the book. The biggest change from
the sixth to the seventh edition occurs in Chapters 1-3. The first chapter in the sixth
edition, Logic and Proofs, has been divided into two chapters in the seventh edition:
Sets and Logic (Chapter 1) and Proofs (Chapter 2). Except for the section on sets,
Chapters 2 (The Language of Mathematics) and 3 (Relations) in the sixth edition have
been combined into Chapter 3 (Functions, Sequences, and Relations) in the seventh
edition. Pre-publication reviews have been very enthusiastic about these changes.

The section on sets is now the first section of the book. This change permits the use
of set terminology throughout the book. It makes sets available for proofs in examples and
exercises, thus providing more interesting examples earlier than in the previous editions.
We can even use sets to introduce proofs (e.g., proving that two sets are equal, proving
that one set is a subset of another) before fully discussing proofs and proof techniques.



The discussion about how to construct proofs has been greatly expanded. Sec-
tions 2.1 and 2.2 are new extended sections on mathematical systems and proof tech-
niques. In addition, there are expanded subsections on proofs of equivalence and ex-
istence proofs (including constructive and nonconstructive existence proofs). Nearly
every proof is preceded by a Discussion section and/or accompanied by a figure. The
Problem-Solving Tips sections include expanded advice, examples, and so on, on how
to do proofs, how to write up proofs, and common errors in proofs. There are two new
Problem-Solving Corners, one on quantifiers, the other on proofs (see Proving Some
Properties of Real Numbers).

The discussion of arguments and rules of inference for propositions has been
moved to follow the discussion of propositions. The rules of inference for quantified
statements are integrated within the quantifiers section.

The number of examples and exercises has been vastly expanded. In the sixth
edition, there were approximately 1370 worked examples and exercises in the first three
chapters. In the seventh edition, there are approximately 1640 worked examples and
exercises in the first three chapters. Of course, not just the quantity of examples and
exercises is important, it is also the quality. In most of the examples found in the sixth
edition, the discussion has been expanded and additional motivation has been added.

Other Changes from the Sixth Edition

Other changes from the sixth edition are as follows:

® The description and notation for integers (Z, Z*, Z~, Z"*"¢?)_rational numbers
(with Z replaced by Q), and real numbers (with Z replaced by R) are introduced
early (in Section 1.1, Sets).

m  Proofs, rather than sketches of proofs as in the sixth edition, are provided for
Theorems 5.1.17 and 5.1.22, which give the greatest common divisor and least
common multiple of two integers given their prime factorizations.

® Recursive algorithms are given (Algorithms 5.3.9 and 5.3.10) to compute the
greatest common divisor of two integers a and b, gcd(a, b), and to compute integers
s and ¢ satisfying gcd(a, b) = sa + tb.

® The Inclusion-Exclusion Principle has been added to Section 6.1.

® Internet addressing is now included in Section 6.1.

m  Several practice exercises have been added to Section 6.1 that specifically say to
use either the Multiplication Principle or the Addition Principle. These exercises
precede other exercises that require the reader to figure out which Principle to use
or require using both Principles.

m  The section on Generalized Permutations and Combinations (Section 6.6 in the
sixth edition) now follows Sections 6.1 and 6.2 (Basic Principles, Permutations
and Combinations) since generalized permutations and combinations are so closely
related to the material in Sections 6.1 and 6.2.

m Several relatively straightforward “warm-up” exercises have been added before
the main pigeonhole exercises (Section 6.8).

| More exercises on graph isomorphism have been added (Section 8.6). The exer-
cises have been divided into those that ask for a proof that two given graphs are
isomorphic, those that ask for a proof that two given graphs are not isomorphic,
and those that ask the reader to determine, with a proof, whether two given graphs
are isomorphic.



In Section 9.3, there are several new backtracking exercises including the popular
Sudoku puzzle.

More examples and exercises are included to highlight common errors (for exam-
ple, the subsection Some Common Errors that precedes the Section 2.1 Review
Exercises discusses some common errors in proofs, and Example 6.2.24 illustrates
a common counting error).

A number of recent books and articles have been added to the list of references.
Several book references have been updated to current editions.

The number of worked examples has been increased to over 650. (There were
approximately 600 in the sixth edition.)

The number of exercises has been increased to nearly 4200. (There were approxi-
mately 4000 in the sixth edition.)

Contents and Structure

This book includes

Sets and logic (including quantifiers). Practical examples such as using the Google
search engine are included (Example 1.2.13). Translating between English and
symbolic expressions is discussed as is logic in programming languages. A logic
game, which offers an alternative way to determine whether a quantified proposi-
tional function is true or false, is discussed in Example 1.6.15.

Proofs (Chapter 2). Proof techniques discussed include direct proofs, counterex-
amples, proof by contradiction, proof by contrapositive, proofs by cases, proofs
of equivalence, existence proofs (constructive and nonconstructive), and math-
ematical induction. Loop invariants are presented as a practical application of
mathematical induction. We also include a brief, optional section on resolution
proofs (a proof technique that can be automated).

Functions, sequences, sum and product notations, strings, and relations (Chap-
ter 3), including motivating examples such as the new 13-character international
standard book number (ISBN), an introduction to hash functions, and pseudo-
random number generators (Section 3.1); an application of partial orders to task
scheduling (Section 3.3); and relational databases (Section 3.6).

A thorough discussion of algorithms, recursive algorithms, and the analysis of
algorithms (Chapter 4). A number of examples of algorithms are presented before
getting into big-oh and related notations (Sections 4.1 and 4.2), thus providing a
gentle introduction and motivating the formalism that follows. An algorithmic ap-
proach is taken throughout this book. We mention that many modern algorithms do
not have all the properties of classical algorithms (e.g., many modern algorithms
are not general, deterministic, or even finite). To illustrate the point, an example
is given of a randomized algorithm (Example 4.2.4). The algorithms are written
in a flexible form of pseudocode, which resembles currently popular languages
such as C, C++, and Java. (The book does not assume any computer science
prerequisites; the description of the pseudocode used is given in Appendix C.)
Among the algorithms presented are tiling (Section 4.4), the Euclidean algorithm
for finding the greatest common divisor (Section 5.3), the RSA public-key en-
cryption algorithm (Section 5.4), generating combinations and permutations (Sec-
tion 6.4), merge sort (Section 7.3), Dijkstra’s shortest-path algorithm (Section 8.4),
backtracking algorithms (Section 9.3), breadth-first and depth-first search (Sec-
tion 9.3), tree traversals (Section 9.6), evaluating a game tree (Section 9.9), finding a



maximal flow in a network (Section 10.2), finding a closest pair of points (Sec-
tion 13.1), and computing the convex hull (Section 13.2).

A full discussion of the “big oh,” omega, and theta notations for the growth of
functions (Section 4.3). Having all of these notations available makes it possible
to make precise statements about the growth of functions and the time and space
required by algorithms.

An introduction to number theory (Chapter 5). This chapter includes classical
results (e.g., divisibility, the infinitude of primes, fundamental theorem of arith-
metic), as well as algorithmic number theory (e.g., the Euclidean algorithm to find
the greatest common divisor, exponentiation using repeated squaring, computing
s and ¢ such that gcd(a, b) = sa + rb, computing an inverse modulo an integer).
The major application is the RSA public-key cryptosystem (Section 5.4). The cal-
culations required by the RSA public-key cryptosystem can be performed using
the algorithms previously developed in the chapter.

Combinations, permutations, discrete probability, and the Pigeonhole Principle
(Chapter 6). Two optional sections (Sections 6.5 and 6.6) treat discrete probability.

Recurrence relations and their use in the analysis of algorithms (Chapter 7).

m Graphs, including coverage of graph models of parallel computers, the knight’s

tour, Hamiltonian cycles, graph isomorphisms, and planar graphs (Chapter 8).
Theorem 8.4.3 gives a simple, short, elegant proof of the correctness of Dijkstra’s
algorithm.

Trees, including binary trees, tree traversals, minimal spanning trees, decision
trees, the minimum time for sorting, and tree isomorphisms (Chapter 9).

m Networks, the maximal flow algorithm, and matching (Chapter 10).

A treatment of Boolean algebras that emphasizes the relation of Boolean algebras
to combinatorial circuits (Chapter 11).

An approach to automata emphasizing modeling and applications (Chapter 12).
The SR flip-flop circuit is discussed in Example 12.1.11. Fractals, including the von
Koch snowflake, are described by special kinds of grammars (Example 12.3.19).

An introduction to computational geometry (Chapter 13).
Appendixes on matrices, basic algebra, and pseudocode.

A strong emphasis on the interplay among the various topics. As examples, mathe-
matical induction is closely tied to recursive algorithms (Section 4.4); the Fibonacci
sequence is used in the analysis of the Euclidean algorithm (Section 5.3); many
exercises throughout the book require mathematical induction; we show how to
characterize the components of a graph by defining an equivalence relation on the
set of vertices (see the discussion following Example 8.2.13); and we count the
number of nonisomorphic n-vertex binary trees (Theorem 9.8.12).

A strong emphasis on reading and doing proofs. Most proofs of theorems are
illustrated with annotated figures and/or motivated by special Discussion sections.
Separate sections (Problem-Solving Cormers) show students how to attack and
solve problems and how to do proofs. Special end-of-section Problem-Solving
Tips highlight the main problem-solving techniques of the section.

A large number of applications, especially applications to computer science.

® Figures and tables to illustrate concepts, to show how algorithms work, to elucidate

proofs, and to motivate the material. Several figures illustrate proofs of theorems.
The captions of these figures provide additional explanation and insight into the
proofs.



Section review exercises.

Notes sections with suggestions for further reading.

Chapter reviews.

Chapter self-tests.

Computer exercises.

A reference section containing more than 160 references.

Front and back endpapers that summarize the mathematical and algorithm notation
used in the book.

Each chapter is organized as follows:

Overview

Section

Section Review Exercises
Section Exercises

Section

Section Review Exercises
Section Exercises

Notes

Chapter Review
Chapter Self-Test
Computer Exercises

Section review exercises review the key concepts, definitions, theorems, tech-
niques, and so on of the section. All section review exercises have answers in the back
of the book. Although intended for reviews of the sections, section review exercises can
also be used for placement and pretesting.

Notes contain suggestions for further reading. Chapter reviews provide reference
lists of the key concepts of the chapters. Chapter self-tests contain four exercises per
section, with answers in the back of the book.

Computer exercises include projects, implementation of some of the algorithms,
and other programming related activities. Although there is no programming prerequi-
site for this book and no programming is introduced in the book, these exercises are
provided for those readers who want to explore discrete mathematics concepts with a
computer.

In addition, most chapters have Problem-Solving Corners.

Exercises

The book contains nearly 4200 exercises, 145 of which are computer exercises. Exercises
felt to be more challenging than average are indicated with a star, ». Exercise numbers
in color (approximately one-third of the exercises) indicate that the exercise has a hint
or solution in the back of the book, The solutions to most of the remaining exercises
may be found in the Instructor’s Guide. A handful of exercises are clearly identified
as requiring calculus. No calculus concepts are used in the main body of the book and,
except for these marked exercises, no calculus is needed to solve the exercises.
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Examples

The book contains over 650 worked examples. These examples show students how to
tackle problems in discrete mathematics, demonstrate applications of the theory, clarify
proofs, and help motivate the material.

Problem-Solving Corners

The Problem-Solving Corner sections help students attack and solve problems and show
them how to do proofs. Written in an informal style, each is a self-contained section
following the discussion of the subject of the problem. Rather than simply presenting a
proof or a solution to a problem, in these sections the intent is to show alternative ways
of attacking a problem, to discuss what to look for in trying to obtain a solution to a
problem, and to present problem-solving and proof techniques.

Each Problem-Solving Corner begins with a statement of a problem. After stat-
ing the problem, ways to attack the problem are discussed. This discussion is followed
by techniques for finding a solution. After a solution is found, a formal solution is
given to show how to correctly write up a formal solution. Finally, the problem-solving
techniques used in the section are summarized. In addition, some of these sections
include a Comments subsection, which discusses connections with other topics in math-
ematics and computer science, provides motivation for the problem, and lists refer-
ences for further reading about the problem. Exercises conclude some Problem-Solving
Corners.

instructor Supplement

An Instructor’s Guide is available at no cost from the publisher to instructors who adopt
or sample this book. It should be requested from your local Prentice Hall representative.
The Instructor’s Guide contains solutions to most of the exercises not included in the
book.

Website

The website
http://condor.depaul.edu/ rjohnson/dm7th

for the seventh edition contains

® Expanded explanations of difficult material and links to other sites for additional
information about discrete mathematics topics. The icon shown signals that an
expanded explanation or a link is at the book’s website.

®  Supplementary material
B Computer programs
B An errata list.
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