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Preface

In recent years, the development of bulk nanostructured materials (BNM) has become
one of the most topical directions in modern materials science. Nanostructuring of
various materials paves the way to obtaining unusual properties that are very attrac-
tive for different structural and functional applications. In this research topic, the use
of both “bottom-up” and “top-down™ approaches for BNM processing/synthesis
routes has received considerable attention. In the “bottom-up™ approach, bulk nano-
materials are fabricated by assembling individual atoms or by consolidating nanopar-
ticulate solids. The “top-down™ approach is different because it is based on grain
refinement through heavy straining or shock wave loading. During the last two
decades, grain refinement by severe plastic deformation (SPD) techniques has
attracted special interest since it offers new opportunities for developing different
technologies for the fabrication of commercial nanostructured metals and alloys for
various specific applications. Very significant progress was made in this area in
recent years. The generation of new and unusual properties has been demonstrated
for a wide range of different metals and alloys: examples include very high strength
and ductility, record-breaking fatigue endurance, increased superplastic forming
capabilities, as well as multifunctional behavior when materials exhibit enhanced
functional (electric, magnetic, corrosion, etc.) and mechanical properties.

The innovation potential of this research area is outstanding, and now a transition
from laboratory-scale research to industrial applications is starting to emerge. In
addition, the subject of BNM is now entering the textbooks on materials science and
related subject areas and therefore it is very important to have a single treatise that
comprises the fundamental as well as applied aspects of bulk nanomaterials. At the
same time, although the processing of BNM by assembling individual atoms/particles
has been described in several books, there is at present no international monograph
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xiv PREFACE

devoted exclusively to bulk nanomaterials produced by severe plastic deformation.
This omission forms the background for the present work. Equally, it is now apparent
that research on BNM has developed so rapidly in recent years that the terminology
needs some clarification, and it is necessary to provide a clearer definition of the terms
widely used within this field. This information is given in Chapter 1.
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Chapter

Introduction

Although the mechanical and physical properties of all crystalline materials are
determined by several microstructural parameters, the average grain size of the
material generally plays a very significant, and often a dominant, role. Thus, the
strength of all polycrystalline materials is related to the grain size, d, through the
Hall-Petch equation, which states that the yield stress, g, is given by

0'y=0'0+k_vd‘”2, (1.1)

where g, is termed the friction stress and & is a constant of yielding [1, 2]. It follows
from Equation 1.1 that the strength increases with a reduction in the grain size, and
this has led to an ever-increasing interest in fabricating materials with extremely
small grain sizes.

It is now over 25 years since Herbert Gleiter presented the first concepts for
developing nanocrystalline (NC) materials (i.e., materials with a grain size of less
than 100nm) and the potential for producing special properties [3]. Since that
time, the field of nanomaterials has flourished over the last two decades, owing to
the considerable interest in this topic and the scientific and technological
importance.

At the same time, it is now apparent that research on nanomaterials has
developed widely in recent years, and the terminology needs some clarification.
The three terms actively used within this field are ultrafine-grained (UFG), NC,
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2 INTRODUCTION

and nanostructured (NS) materials, and it is initially useful to provide a clearer
definition of these three terms, which have been discussed at several conferences
and in reviews [4-10].

With reference to the characteristics of polycrystalline materials, UFG materials
can be defined as polycrystalline materials having very small and reasonably
equiaxed grains with average grain sizes less than ~1 pm and grain boundaries with
predominantly high angles of misorientation. In practice, the presence of a large
fraction of high-angle grain boundaries is important in order to achieve advanced and
unique properties [5]. Thus, the grain sizes of UFG materials lie both within the sub-
micrometer (100—1000 nm) and the nanometer (less than 100nm) ranges. For grain
sizes below 100nm, the latter are termed nanocrystalline materials or nanocrystals.
In practice, UFG materials also exhibit other structural elements having sizes of less
than 100nm including second-phase particles or precipitates, dislocation substruc-
tures, and pores. These nanometer-sized features also have a considerable influence
on the properties of the materials. For example, in severe plastic deformation (SPD)
processing, nanostructural elements such as nanotwins, grain boundary precipitates,
and dislocation substructures may form within the ultrafine grains of 100-300nm in
size, and their formation will have a significant effect on the mechanical and
functional properties [7]. Materials containing these nanostructural elements are
designated “nanostructured materials.” In order to qualify as bulk nanostructured
materials (BNM), the only additional requirements are that there exists a homoge-
neous distribution of nanostructural elements in the entire sample and the samples
typically have 1000 or more grains/nanostructural elements in at least one direction.

To date, two basic and complementary approaches have been developed for the
synthesis of BNM, and these are known as the “bottom-up™ and the “top-down”
approaches [11, 12].

As was already noted earlier, in the “bottom-up™ approach, BNM are fabricated
by assembling individual atoms or by consolidating nanoparticulate solids. Examples
of these techniques include inert gas condensation [6, 11], electrodeposition [13],
ball milling with subsequent consolidation [14], and cryomilling with hot isostatic
pressing [15, 16], where cryomilling essentially denotes mechanical milling in a
liquid nitrogen environment. In practice, these techniques are often limited to the
production of fairly small samples that may be useful for applications in fields such
as electronic devices but are generally not appropriate for large-scale structural appli-
cations. Furthermore, the final products from these techniques invariably contain
some degree of residual porosity and a low level of contamination, which is introduced
during the fabrication procedure. Recent research has shown that large bulk solids, in
an essentially fully dense state, may be produced by combining cryomilling and hot
isostatic pressing with subsequent extrusion [17], but the operation of this combined
procedure is expensive, and at present it is not easily adapted for the production and
utilization of structural alloys for large-scale industrial applications.

The “top-down” approach is different because it is dependent upon taking a bulk
solid with a relatively coarse grain size and processing the solid to produce a UFG
microstructure through SPD. Processing by SPD refers to various experimental pro-
cedures of metal forming that may be used to impose very high strains on materials



