Structural Studies of Macromolecules by Spectroscopic Methods

Edited by K. J. Ivin

Structural Studies of Macromolecules by Spectroscopic Methods

Edited by

K. J. Ivin

Professor of Physical Chemistry, Department of Chemistry, The Queen's University of Belfast

A Wiley-Interscience Publication

JOHN WILEY & SONS

London · New York · Sydney · Toronto

Copyright @ 1976, by John Wiley & Sons, Ltd.

All rights reserved.

No part of this book may be reproduced by any means, nor transmitted, nor translated into a machine language without the written permission of the publisher.

Library of Congress Cataloging in Publication Data:

Main entry under title:

Structural studies of macromolecules by spectroscopic methods.

'A Wiley-Interscience publication.' Includes bibliographical references.

Macromolecules—Analysis.
 Spectrum analysis.

 Ivin, Kenneth John. [DNLM: 1. Macromolecular systems— Congresses. 2. Spectrum analysis—Congresses.
 QD380 S927 1974]

QD381.S8 1976 547'.7 75-19355 ISBN 0 471 43120 6

Set on Monophoto Filmsetter and printed in Great Britain by J. W. Arrowsmith Ltd., Bristol.

Preface

This volume is based largely on the contributions to a meeting held at Cranfield Institute of Technology, near Bedford, England in July 1974 under the auspices of the Macromolecular Group of the Chemical Society of London. The object of the meeting, and also that of this volume, was to bring together information about the application of some of the more recently developed spectroscopic methods to the study of macromolecules.

The contributions divide into five groups, dealing with neutron scattering (1–4), far infrared and Raman spectroscopy (5–8), electron spectroscopy (9), nuclear magnetic resonance spectroscopy (10–13) and electron spin resonance spectroscopy (14–16).

These techniques allow a wide variety of information to be obtained on polymers, not only about their detailed chemical structure (9–15) but also about their conformations (7), distance between ends (1), rate of collision between ends (16), vibration frequencies (3–8), segmental motions (2, 14, 15), crystallinity (7), lamellar thickness (6), and surface composition (9).

Much of physical science may be imagined on a three-coordinate system in which the axes are labelled 'Method', 'Substance' and 'Molecular property'. In this volume are described perhaps a dozen spectroscopic methods applied to nearly a hundred macromolecular substances in order to obtain about a dozen types of molecular property. It is hoped that the coordinate points thereby established on this universal frame may help to provide the reader with a guide into unknown regions.

K. J. IVIN

Contributing Authors

ALLEN, G.	Department of Chemistry, University of Manchester,
	England.
Ando, D. J.	Department of Physics, Queen Mary College, London, England.
BATCHELDER, D. N.	Department of Physics, Queen Mary College, London, England.
Bloor, D.	Department of Physics, Queen Mary College, London,
Dovery E. A	England.
BOVEY, F. A.	Bell Laboratories, Murray Hill, New Jersey, U.S.A.
Bullock, A. T.	Department of Chemistry, University of Aberdeen, Scotland.
Cameron, G. G.	Department of Chemistry, University of Aberdeen, Scotland.
CLARK, D. T.	Department of Chemistry, University of Durham, England.
CUDBY, M. E. A.	I.C.I. Ltd., Prastics Division, Welwyn Garden City,
CODBI, M. D. A.	England.
CUNLIFFE, A. V.	
	E.R.D.E., Waltham Abbey, Essex, England.
EBDON, J. R.	Department of Chemistry, University of Lancaster, England.
FULLER, P. E.	E.R.D.E., Waltham Abbey, Essex, England.
HENDRA, P. J.	Department of Chemistry, University of Southampton,
	England.
HIGGINS, JULIA S.	Institut Laue-Langevin, Grenoble Cedex, France.
LINDBERG, J. J.	Department of Wood & Polymer Chemistry, University of
Dividitio, 5. 5.	Helsinki, Finland.
PETHRICK, R. A.	Department of Pure & Applied Chemistry, University of
TETHRICK, IX. A.	
Drugger F II	Strathclyde, Glasgow, Scotland.
Preston, F. H.	Department of Physics, Queen Mary College, London, England.
Schaefer, J.	Monsanto Company, St. Louis, Missouri, U.S.A.
SHIMADA, K.	Department of Chemistry, SUNY College of
	Environmental Science and Forestry, Syracuse, N.Y., U.S.A.
	U.S.A.

此为试读,需要完整PDF请访问: www.ertongbook.com

Department of Chemistry, University of Tokyo, Japan.

SHIMANOUCHI, T.

SZWARC, M. Department of Chemistry, SUNY College of

Environmental Science and Forestry, Syracuse, N.Y.,

U.S.A.

TÖRMÄLÄ, P. Department of Wood and Polymer Chemistry, University

of Helsinki, Finland.

WHITE, J. W. St. John's College, Oxford, England.

WILLIS, H. A. I.C.I. Ltd., Plastics Division, Welwyn Garden City,

England.

WRIGHT, C. J. A.E.R.E. Harwell, Didcot, Berkshire, England.

Contents

	w of Neutro Unperturbe							to the	e Mea	isurer	nent
G. ALI	LEN '										
1.1 Int	troduction	÷	ž.	9	ž.	×	×	¥	*		1
1.2 Ne	utron Scatt	ering	¥		÷	8	*			8	1
1.2.1	eutron Scatt Energy an	d mom	entum	trans	fer	4	9	ě		ž.	2
1.2.2	Scattering	cross-s	section	s; coh	erent	and i	ncohe	erent	*		3
1.2.3	Selection	rules ar	nd mol	ecular	spect	rosco	ру	r.			4
	sic Neutron										4
1.4 Me	easurements	of Mo	lecula	r Dim	ensio	ns in	Bulk t	y Sm	all-Ar	ıgle	
Ne	utron Cohe	erent Sc	atterir	ıg			141		*	1.0	5
1.4.1	Apparatus	s and ex	xperim	ental	techn	ique	14			£06.	7
1.4.2	Results of	small-	angle r	neutro	n scat	terin	g mea				9
	.2.1 Poly(r										9
	2.2 Polyst										9
	2.3 Polyet										10
1.4	2.4 Rubb	er elast	icity	×	ÿ.		ě	ž.	(i)	,	10
1.5 Re	ferences.	No.		241		ii.	w	*	91	16	11
2. Diffusio	nal Motion	of Rub	bers								
J. S. H	IGGINS										
2.1 Int	roduction										13
	Correlatio										
	perimental			or por		c ojst					15
	Measuren	nent			,						15
	Analysis										16
2.3 Bu	lk Polymers	5		1.0	ì		15				17
2.3.1	Polydimet	hylsilo	xane	100			15				17
	Other pol							2			19
	Temperati										
2.4 Po	lymers in S	olution									21
2.4.1	Small mol	ecules	in CS.						90		
2.4.2	Small mol Poly(ethyl	ene oxi	de) in	soluti	on						23

	2.5	Higher Resolut	ion St	udies	of Bul	k Pol	ymers				4	23
	2.5	5.1 The function	nal fo	rm of	S(Q)	ω)				·	ne:	23
	2.5	5.1 The function 5.2 High resolu	ition e	experi	ments							23
	2.5	5.3 The broade	ning f	uncti	on and	its h	alf-wic	lth var	iation		i#1	25
		Outlook .										26
	2.7	References.						v.				28
3.	Tors	sion Vibrations in	n Poly	mers								
	C. J	. WRIGHT										
	3.1	Introduction										29
	3.2	Experimental									~	30
		Results .					443			i i	1	30
		3.1 Poly(propy	lene o	vide):	and no	Ivnro	nvlene	· torei	on frec	menc		20
	J.,	and energy	harri	arc	ina po	iypio	pyrene	. torsi	OII II CC	quone	ics	30
	3 1	and energy 3.2 Poly(methy	l mati	hooryl	ata) a	d no	dula m	othyle	turana). off	· ·	30
	5	of microstr	1 Illeti	nacryi	ate) a	ia po	ny(α-m	letifyis	tyrene). em	CI	34
	2	of microstr	ucture		•		. t t.		*	*		
		3.3 Polystyrene	: tors	ion ir	equen	cy of	the ph	enyi gi	roup	(8)	3	37
	3.4	The state of the s	Mech	ianica	il and	Diele	ctric L	oss Da	ata		8	38
	3.5	Conclusion.	*		*	*	*		9	*	*	39
	3.6	References.			~		a.					39
4.	Stuc	lies of Phonons is	n Poly	mer (Crystal	S						
	ı v	. WHITE										
	3. 11											
	4.1	Introduction	÷		×	ž.	ž.	(x)			181	41
	4.2	Polymer Vibrat	ions a	nd Fo	orces	3			ž			42
	4.3	Techniques of I	Neutro	on Sca	atterin	g Spe	ctrosco	ру			, si	44
	4.4	Phonons in Pol	vcryst	alline	Polyte	etraflu	uoroet	hylene				46
	4.5	Polyethylene										49
	4.6	Polyoxymethyle	ene									51
	4.7	Neutron Diffra	ction	from !	Collan	en.					Ċ	56
	4.8											58
	4.0	References.							(4)	114"	*	20
5	A N	ew Aspect of Vil	rection	s Smoo	trocoo	nv of	Lliah l	Dolum	D. MCC.			
3.	A. 19	ew Aspect of vii	nauoi	Dec	uosco	py or	rugn i	oryme	215			
	T. S	HIMANOUCH	I									
	5.1	Introduction	,			,						59
	5.2	n-Paraffin Mole	ecules									59
	5.3	Longitudinal A					Paraffir	Mole	cules			63
	5.4	Low-Frequency	Ram	an R	inde o	f Cry	stalline	n-Par	affine			66
	5.5	Polypeptide Ch										68
	5.6	Local and Non										69
	5.7											70
		Overall Vibratio		-			ins and	Prote	III IVIO	iccuie	S .	70
	5 8	References										17

6.	The	Measurement of Lamellar Thickn	ess by	Ram	an Me	ethods			
	P. J.	HENDRA							
	6.1	Methods for the Investigation of							73
	6.2	Experimental Methods.	<u>@</u>	*	3	(4)	*		75
	6.3	Applications of the Raman Tech	inique	*		1F			77
	6.4	Conclusion	(4)			$(\mathbf{x}) = A$			80
	6.5	Conclusion	•		,	× ,		•	80
7.	The	Study of Crystallinity in Syntheti	c Poly	mers	by Lo	w-Free	quenc	y	
	Vibi	rational Spectroscopy							
	H. A	A. WILLIS and M. E. A. CUD	DBY						
	7.1	Introduction					4		81
	7.2	Introduction The Far Infrared Region (400 –	10 cm	1 - 1)	91		- Ĉ		83
		Polyethylene							84
	7.4	Polyethylene				•	÷		85
	7.5	Polytetrafluoroethylene .					•		87
		References							
	7.0	References	:*			:•)		(*)	07
8.	Reso	onant Raman Scattering from Dia	cetyler	ne Pol	ymers	6			
	D. B	BLOOR, F. H. PRESTON, D. J	. AND	OO an	d D.	N. BA	ATCF	IELI	DER
	8.1	Introduction							91
	8.2	Resonant Raman Scattering . Vibrational Modes of the Diacet							93
	8.3	Vibrational Modes of the Diacet	vlene	Back	one	-			95
	8.4	Experimental Techniques .							98
	8.5	Resonant Raman Scattering fr	om Si	ingle	Cryst	al Dia	acetyl	ene	
		Polymers							99
	8.6	Resonant Raman Scattering	from	Amo	rphoi	is Dia	acetyl	ene	
		Polymers							106
	8.7	Conclusions						1+1	108
	8.8	Conclusions	÷				,		108
9.	The	Application of ESCA to Studies of	of Strue	cture	and B	onding	in Po	olvme	ers
		C. CLARK							
									111
	0.1	Introduction	*	*			,		110
	0.2	1 Introduction	5	*	*	*			112
	9.2	2.1 Introduction	4	*	151	*		14	112
	9.2	2.2 Properties of core orbitals	*	*	141	*		740	113
	9.2	2.3 The ESCA experiment .				*:		1.0)	113
		2.4 Photoelectric cross-sections							
		2.5 Energy considerations .							
	Q	2.6 Linewidths							171

9.2.7 Simple examples illustrating p	oints c	liscuss	ed in	9.2.1-	9.2.6	. 122
9.2.8 Basic types of information av	ailable	from	ESCA	studi	es	. 130
9.3 A Preliminary Appraisal of the Ap	plicati	on of l	ESCA	to Sti	idies (121
Structure and Bonding in Polyme	ers	35	*	*		. 131
9.3.1 Introduction	*	*	E			. 131
9.3.2 Sample preparation .		*	÷	×		. 134
9.3.2.1 From solution.	•		*	(4)	1	. 134
9.3.2.1 From solution. 9.3.2.2 From pressing or extrusion 9.3.2.3 Polymerization in situ	on		*	/#1	•	. 134
9.3.2.3 Polymerization in situ	41	4		30	*	. 135
9.3.3 Energy referencing.	381	¥7.		(4)	*	
9.4 Application to Studies of Homog						. 138
9.4.1 Homopolymers	00 200 - 200	. 17	*			. 138
9.4.2 Theoretical models for a qua	intitati	ve dise	cussio	n of r	esults	. 145
9.4.3 Copolymers		*	(*)	*	**	. 153
9.4.3.1 Copolymer compositions		*	: 10	*	* 1	. 154
9.4.3.2 Structural details9.5 Application to Surface Studies		i.		*		. 159
9.5 Application to Surface Studies	*	×	*	÷	ž	. 164
9.5.1 Surface structure of block co	polyme	ers		¥	3	. 164
9.5.2 CASING 9.5.3 Alkali metal etching of PTFI		3		ž	91	. 167
9.5.3 Alkali metal etching of PTFI	∃ .	2	*	ż		. 169
9.5.4 Oxidation of polymer sample9.5.5 Surface fluorination of polye	es.	9			*	. 169
9.5.5 Surface fluorination of polye	thylene	3.				173
9.6 References	8				36	. 177
10. High-Resolution Carbon-13 Studies o	f Polyn	ner St	ruetur	P		
	. L Olya	ner Se	i actui			
F. A. BOVEY	•		1			
10.1 Introduction						. 181
10.2 C-13 Chemical Shifts of Paraffir	ic Hyd	lrocar	bons			. 182
10.3 C-13 Observations of Chain	Struct	ture a	and I	Brancl	ning	in
Polyethylene and Poly(vinyl chl	oride)					. 188
10.4 C-13 Study of Biopolymers.				ar.		. 193
Polyethylene and Poly(vinyl chl 10.4 C-13 Study of Biopolymers . 10.5 A Final Word		10				. 199
10.6 References						. 199
						. 15.
11. The Analysis of ¹³ C n.m.r. Relaxatio	n Expe	rimen	ts on l	Polym	ers	
J. SCHAEFER						
11.1 Introduction		×				
11.2 Relaxation Experiments on Solu	utions o	of Pol	ymers	and o	on Sol	id
Polymers above T_g .	×	8		A.	*	. 202
11.2.1 Spin-lattice relaxation time	S .			161		. 202
11.2.1.1 Polystyrene		TÇ.		Q1		. 203
11.2.1.1 Polystyrene	141	Tie.			190	. 204
11.2.1.3 Elastomers						

11.3 11	2.2 Nuclear Ov Relaxation Exp 3.1 Spin-lattice enhancemen 3.2 Cross-polar	relaxation relaxation	on Rig	rid So mes	lid Po and	lymer nuclea	s belo ar Ov	w T _g verhau	iser	216 221
11.4	3.3 Magic-angle References	. spinning	*				*			
	n.m.r. Studies of						ners			
A. V	CUNLIFFE, I	e. E. FU	LLER	and	R. A	PET	HRIC	CK		
12.1	Introduction			¥			×	×	gr.	227
12.2	Experimental	2 .	,		3	30		*		230
12.3	13C n.m.r. Spec	tra of α-N	lethyls	styren	e/Alk	ane D	imers			231
12.4	13C n.m.r. Spec	tra of α-N	lethyls	styren	e/Alk	ane C	opoly	mers		234
12.5										239
Mag	Characterization gnetic Resonance EBDON	of Diene	Poly	mers l	by Hig	gh Re	solutio	on Pro	ton	
10.1	V 1									241
13.1	Introduction	× *			÷			٠,	*	241
13.2	Homopolymers		*	*	÷	9	18	×		242
13.	2.1 Butadiene						4	*	×	242
13.	2.2 Isoprene	a :==		(4)	*	*			*	244
13.	2.3 Chloropren2.4 Other diene	е .		41		96			100	245
									:*:	246
13.3	Copolymers								-	247
13.	3.1 Methyl met	hacrylate-	diene	copol	ymers					247
13.	3.2 Acrylonitril	e-diene co	polyn	ners						252
13.	3.3 α-Methylsty	rene-buta	diene	copol	ymers					252
13.	3.4 Other copo	ymers								253
13.4	3.4 Other copo References		,							253
	Labels and Prol dified Polymers	oes in Dyn	amic a	and St	ructur	al Stu	idies o	of Synt	hetic	and
P. T	ÖRMÄLÄ and J	. J. LINI	OBER	G						
14.1	Introduction	on :e	,	140					100	255
14.2	Theoretical Met	hods .		(*)				,	(*)	256
1.4.2	Lincon Dolumon			(8) (8)						259
14.	3.1 Spin probe	studies								
14	3.2 Spin labellin	ng studies				-				263
	3.3 Application	notential	ities	*						200
	Network Polym	erc	11100	*	*	30				266
1.76.07	I SERVOIR I OIYIII	C15 .	×		•	9		*		200

	14.5 14.6	Conclusio	ons .		E	į		*	ė.				270 270
15	5. E.s.ı	r. Studies o	of Spin-	Labe	lled S	Synthe	etic P	olymer	rs				
		BULLO	-										
													272
	15.1	Introduct	ion .	Cl.		Storasti		C I	. l1	lad Da			273
		Preparati											
	15.2	2.1 Polys 2.2 End-l	tyrene.	1-		i Investigan		· ·		-		*	283
	15.2	2.2 End-l	abelled	pory	(met	nyı m	tor ar	rylate) .	740		*	284
		2.3 Polya											
		Theory an											
		Results o											
	13.4	4.1 Polys	tyrene i	ın so	iutio	n.					,	700	
	1	5.4.1.1 T 5.4.1.2 S	ne depe	ende	nce o	$1 \tau_c o$	n moi	ecular	weig	gnι.			20.4
	1	5.4.1.2 5	oivent (епест	.S				, •		×		294
	16	5.4.1.3	oncent	ratio	пепе	ects	i de la como	-1-4-2				9	297
	15.4	4.2 End-l 4.3 Polya	abelled	poly	(met	nyı m	etnac	rylate) .			9	299
	15.4	4.3 Polya	crylates	s lab	ellea	on es	ter gr	oups		1.0	*		303
		4.4 Relax											
	15.5	Spin-Lab	els in St	ruct	ural S	Studie	es.			<u>.</u>	*		7 30/
	15	5.1 Lithi	ation of	poly	ystyr	ene a	nd sty	rene-r	ialosi	tyrene			200
		copol	ymers .						× .	5		90	308
		5.2 Deco											
	15.6	Reference	es .		•	*	•	*	**	*	9		313
16	6. E.s.	r. Studies	of Dyna	mic l	Flexi	bility	of Mo	olecula	r Cha	ains			
		HIMADA											
	K. SI	IIIMADA											
	16.1	Introduct								×			
	16.2	Experime											
	16.3	Results a	nd their	Sign	iifica	nce		ï		*	9	*	321
	16.4	Dynamic	or Stat	ic M	odel	of Int	ramo	lecula	r Exc	hange	? .		324
	16.5	The Effec	t of the	Visc	osity	of th	e Sol	vent			4	,	325
	16.6	Concludi	ng Rem	arks	÷			*	*	16			328
	16.7	Reference	es .		×				4.1	90		4	328
	16.8	Appendix	ί		*				(e)	14		Lagr	329
S	ubject	Index	:e *								•	180	333

A Review of Neutron Scattering with Special Reference to the Measurement of the Unperturbed Dimensions in Macromolecules

G. Allen

University of Manchester

1.1. INTRODUCTION

A few years ago a group of British chemists and physicists presented a case for the construction of a High Flux Beam Reactor (HFBR) to be devoted to neutron scattering studies of the properties of matter. The case included a programme of work concerned with the structure and dynamics of polymeric materials. In the event the Science Research Council (U.K.) obtained a one-third share in the Franco-German HFBR, at that time under construction at Grenoble. The first four contributions to this volume are presented by workers who pioneered the use of the low-flux facilities at Harwell for studies of polymeric materials and who are now using the new facilities at Grenoble. Our aim is to present an overall view of the status of neutron scattering work on polymers. In this first contribution the general principles of neutron scattering from molecular systems are cursorily reviewed and then the results are presented of measurements of the radii of gyration of macromolecules by small-angle neutron scattering.

1.2 NEUTRON SCATTERING²

The neutron has a mass of 1 a.u., it is uncharged and has a spin $I=\frac{1}{2}$. The wavelength distribution of thermal neutrons produced from reactors has a Maxwellian peak at 1.8 Å. In most neutron scattering experiments longer wavelength neutrons are used and so cold neutron sources have been developed to enhance the flux at 5–10 Å. Liquid hydrogen refrigeration is usually used to cool the neutrons and the flux at 5 Å is enhanced by an order of magnitude relative to the corresponding flux of thermal neutrons.

At a wavelength of 5 Å, neutrons have velocities of $\sim 1000 \text{ m s}^{-1}$ and kinetic energy of 300 J mol^{-1} ($\equiv 23 \text{ cm}^{-1} \equiv 4 \text{ meV}$). For a given wavelength the kinetic energy of a neutron beam is very much lower than the photon energy of electromagnetic radiation. Furthermore much larger momentum transfers can be studied because of the large mass of the particle. Neutron scattering is distinguished by the fact that it is the only scattering phenomenon for which the energy and momentum transfers are simultaneously of the required orders of magnitude for the study of molecular systems—and hence polymers.

1.2.1 Energy and momentum transfer

When a neutron of incident wavelength λ_0 and velocity v_0 is scattered through an angle θ in an inelastic process (Figure 1.1) which changes the scattered

Figure 1.1 Momentum transfer in a neutron scattering event. \mathbf{k}_0 is the initial wave vector, \mathbf{k} the scattering wave vector and \mathbf{O} the momentum transfer

wavelength to λ and the velocity to v, then the energy transfer is:

$$\Delta E = \frac{1}{2}m(v^2 - v_0^2) = \frac{\hbar^2}{2m}(k^2 - k_0^2)$$

where *m* is the mass of the neutron and $\mathbf{k}_0 = 2\pi/\lambda_0$ and $\mathbf{k} = 2\pi/\lambda$ are the wave vectors.

From Figure 1.1, the momentum transfer is:

$$\hbar \mathbf{Q} = \hbar (\mathbf{k} - \mathbf{k}_0)$$

For an inelastic process

$$\mathbf{Q} = 2 \left[\left(k_0^2 + \frac{m \Delta E}{\hbar^2} \right) - \mathbf{k}_0 \left(k_0^2 + \frac{2m \Delta E}{\hbar^2} \right)^{\frac{1}{2}} \cos \theta \right]^{\frac{1}{2}}$$

and for an elastic process, or a quasi-elastic process for which $\Delta E \sim 0$

$$\mathbf{Q} = \frac{4\pi \sin\left(\theta/2\right)}{\lambda_0}$$

Elastic ($\Delta E=0$), quasi-elastic ($\Delta E\sim0$) and inelastic ($\Delta E\neq0$) scattering events are observed in neutron experiments and these events are studied as a

function of momentum transfer Q. We shall see shortly that each type of scattering process has a specific application in the study of polymeric materials.

1.2.2 Scattering cross-sections; coherent and incoherent

In one popular type of neutron scattering spectrometer, the time-of-flight instrument, energy transfer is measured by the difference in velocity of the incident neutrons and of the neutrons scattered in a fixed direction. The momentum transfer is defined by the incident wavelength λ_0 and the angle of scatter θ for elastic and quasi-elastic events; for inelastic events ΔE is required in addition in order to measure \mathbf{Q} .

Being uncharged, neutrons are scattered by the *nuclei* in the sample under investigation. Consequently the optical selection rules which govern the scattering and absorption of electromagnetic radiation do not apply. In principle *all* possible energy and momentum transfers are observable in neutron scattering experiments.

The scattering cross-section σ (or alternatively the scattering length b, since $\sigma = 4\pi \langle b^2 \rangle$) is different for each kind of nucleus—i.e. for each isotope, and is independent of energy for the low-energy neutrons usually used. For example $\sigma^{1H} \neq \sigma^{2H} \neq \sigma^{12C}$ etc. However, because the neutron has a spin of $\frac{1}{2}$, the scattering cross-section also depends on the total spin angular momentum of the neutron and the scattering nucleus. For a nucleus with spin I the net spin can take on values $I + \frac{1}{2}$, $I - \frac{1}{2}$. Thus if we consider an array of nuclei containing only one isotopic species of spin I, provided the nuclear spins are uncorrelated, two scattering components are generated:

(i) Spin-coherent scattering, with associated interference effects; its intensity is proportional to the square of the mean scattering length averaged over the array of nuclei, i.e.

$$\sigma_{coh} = 4\pi \langle b \rangle^2$$

(ii) Spin-incoherent scattering, displaying no interference effects; its intensity is proportional to the mean square of the deviation from the average over the array,

$$\sigma_{incoh} = 4\pi [\langle b^2 \rangle - \langle b \rangle^2]$$

Table 1.1 Nuclear scattering cross-sections (in barns) for low-energy neutrons

	I	σ_{coh}	σ_{incoh}
¹H	1/2	1.8	79.7
^{2}H	ĩ	5.6 5.6	2.0
12C	0	5.6	
14N	1	11.6	0.3
16O	0	4.2	
²⁸ Si	0	2.0	_

A special case arises for nuclei for which I=0, since only the coherent component is generated for these isotopes. Table 1.1 lists the coherent and incoherent scattering cross-sections for the nuclei most commonly occurring in synthetic and natural polymers; note the wide range of values for both components.

1.2.3 Selection rules and molecular spectroscopy

Finally in this brief review of neutron scattering from molecular systems we must consider the consequences in molecular spectroscopy of the absence of optical selection rules. In infrared spectroscopy only the normal modes for which the element of the dipole moment tensor is finite are active (i.e. $|\partial \mu/\partial q|^2 > 0$) and correspondingly in Raman spectroscopy the element of the polarizability tensor must be finite (i.e. $|\partial \alpha/\partial q|^2 > 0$). Indeed the intensities of the observed bands depend on the magnitude of these elements. If we perform a 'Raman' experiment using neutrons rather than visible light to excite the spectrum (and noting that because $E \equiv 23 \, \mathrm{cm}^{-1}$ only the anti-Stokes region will be observed) then all normal modes will be active, because optical selection rules do not apply for the scattering of neutrons by nuclei. Further, the intensity of each band will be related to the mean-square-displacement of the nuclei in its normal mode. Thus certain torsional intramolecular modes, especially of side groups, in polymer chains will be more intense than stretching and bending modes.

Another consequence of the relaxed selection rules is that in periodic systems such as crystals or polymer chains the dispersion of the modes has to be considered. In optical molecular spectroscopy only the phase difference $\delta=0$ needs to be considered; in neutron molecular spectroscopy all phase differences are allowed. Thus the computation of the density of vibrational states for a neutron spectrum is in this sense a much more formidable problem than for an infrared or Raman spectrum.

There is, fortunately, an effect peculiar to neutron spectroscopy which greatly aids vibrational assignment. The large difference in cross-section between ¹H and ²H noted in Table 1.1 means that selective deuteration of, say, a CH₃ group greatly reduces its intensity in the neutron molecular spectrum not only because of the change in cross-section but also because of the reduction in the amplitudes of nuclear displacement in the normal mode.

1.3 BASIC NEUTRON SCATTERING EXPERIMENTS IN POLYMERS

From the point of view of the neutron scattering technique there are six basic types of experiment, which can be classified as elastic, quasi-elastic and inelastic, each category having a spin-coherent and spin-incoherent sub-division. In this section we will simply list the applications to polymer problems which are already being studied or are imminent.

Elastic		
Coherent	Crystallography	Structure of crystalline polymers
	Small-angle scattering	Molecular dimensions (R_g) in bulk polymers
Incoherent	-	>===
Quasi-elastic		
Coherent	Doppler broadening of elastic peak as f(Q)	Molecular dimensions and molecular dynamics in solutions and rubbers
Incoherent	Dopper broadening of elastic peak as $f(Q)$	Molecular dynamics in solutions and rubbers
Inelastic		
Coherent	Dispersion curves of intra-	Elastic constants of crystals
	and intermolecular vibrations	Intermolecular potential functions
Incoherent	Molecular spectra	Molecular vibrations
	Lattice vibrations	Intramolecular potential functions

In general, deuterated samples must be used for the study of coherent scattering phenomena to reduce the incoherent contribution from protons, and selective deuteration is useful in neutron inelastic incoherent spectroscopy. The list is not exhaustive and the remainder of this contribution will deal only with small-angle neutron scattering. The following three contributions will deal with, respectively, quasi-elastic studies of self diffusion (p. 13), molecular spectroscopy (p. 29), and the study of the dispersion curves of intra- and intermolecular vibrations in crystalline polymers (p. 41).

1.4 MEASUREMENT OF MOLECULAR DIMENSIONS IN BULK BY SMALL-ANGLE NEUTRON COHERENT SCATTERING

Some 20 years ago Flory³ put forward the hypothesis that in the amorphous states, rubber and glass, a polymer chain obeys random flight statistics, that is to say that the molecules have unperturbed dimensions as found in θ -solvents at the θ -temperature. Although unperturbed dimensions of polymer chains are readily measured in θ -solvents by Rayleigh light scattering or by small-angle X-ray studies, hitherto no measurements have been possible in the bulk rubber or glass. These techniques are applicable to solutions because of the contrast provided by the difference in refractive index between solute and solvent in light-scattering studies and the difference in electron densities in the case of X-ray scattering.

In the bulk undeuterated polymer there is, of course, no contrast between individual polymer molecules and the matrix. However, if we consider 1% of a perdeuterated polymer dissolved in a matrix of the corresponding protonated