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Preface

Determination of the protein sequence is as important today as it was a
half century ago, even though the techniques and purposes have changed over
time. Mass spectrometry has continued its recent rapid development to find
notable application in the characterization of small amounts of protein, for
example, in the field of proteomics. The “traditional” chemical N-terminal
sequencing is still of great value in quality assurance of the increasing number
of biopharmaceuticals that are to be found in the clinic, checking processing
events of recombinant proteins, and so on. Itis joined in the armory of meth-
ods of protein analysis by such techniques as C-terminal sequencing and amino
acid analysis. These methods are continually developing. The first edition of
Protein Sequencing Protocols was a “‘snapshot” of methods in use in protein
biochemistry laboratories at the time, and this, the second edition, is likewise.
Methods have evolved in the intervening period, and the content of this book
has similarly changed, the content of some chapters having been superceded
and replaced by other approaches. Thus, in this edition, there is inclusion of
approaches to validation of methods for quality assurance work, reflecting the
current importance of biopharmaceuticals, and also a guide to further analysis
of protein sequence information, acknowledging the importance of
bioinformatics. Some of the areas are also the subjects of other volumes in the
Methods in Molecular Biology™ series published by Humana, and the inter-
ested reader is directed to such volumes as 89 (Protein Purification Proto-
cols), 76 (Glycoanalysis), 112 (2-D Proteome Analysis Protocols), 143 (Protein
Structure Prediction), 146 (Mass Spectrometry of Proteins and Peptides), and
159 (Amino Acid Analysis Protocols).

The style of Protein Sequencing Protocols is like that of others in the
series, that of a laboratory manual. The aim is to permit ready replication of
the methods. Itis recognized, however, that various of the techniques require
expensive equipment. This can be a barrier to those without such facilities,
but who might wish to collaborate with those who do have them. This volume
is intended to indicate to those workers what is required by way of sample
preparation, and what can be achieved by the techniques, and so be an aid to
collaboration. Appendices are provided as handy references to the molecular
weights of amino acids and their derivatives, and to consensus sequences.
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Strategies for Handling Polypeptides
on a Micro-Scale

Bryan John Smith and Paul Tempst

1. Introduction

Samples for sequence analysis frequently are in far from plentiful supply.
Preparation of protein without loss, contamination or modification becomes
more problematical as the amount of the sample decreases. The most success-
ful approach is likely to include the minimum number of steps, at any of which
a problem might arise. The strategy for preparation of a given protein will
depend on its own particular properties, but several points of advice apply.
These are:

* Minimize sample loss: see Note 1.

* Minimize contamination of the sample: see Note 2.

* Minimize artificial modification of the sample: see Note 3.

When it comes to sample purification, polyacrylamide gel electrophoresis is
a common method of choice, since it is suited to sub-pug amounts of sample,
entails minimal sample handling, is quick, and has high resolving power. Pro-
teins may be fragmented while in the gel (see Chapters 5 and 6), or electroeluted
from it using commercially available equipment. Commonly, however, pro-
teins and peptides are transferred onto membranes prior to analysis by various
strategies as described in Chapter 4. Capillary electrophoresis (Chapter 8) and
high-performance liquid chromatography (HPLC) are alternative separation
techniques. Capillary electrophoresis has sufficient sensitivity to be useful for
few pg or sub- pg amounts of sample. For maximum sensitivity on HPLC,
columns of 1 mm or less inside diameter (id) may be used, but for doing so
there are considerations extra to those that apply to use of larger-bore columns.
These are discussed below.

From: Methods in Molecular Biology, vol. 211: Protein Sequencing Protocols, 2nd ed.
Edited by: B. J. Smith © Humana Press Inc., Totowa, NJ
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2 Smith and Tempst

Although desirable to minimize the amount of handling of a sample, it is
frequently necessary to manipulate the sample prior to further purification or
analysis, in order to concentrate the sample or to change the buffer, for
instance. Some examples of methods for the handling of small samples follow
below. They do not form an exhaustive list, but illustrate the type of approach
that it may be necessary to adopt.

2. Materials
2.1. Microbore HPLC

1. An HPLC system able to operate at low flow rates (of the order of 30 puL/min)
while giving a steady chromatogram baseline, with minimal mixing and dilution
of sample peaks in the postcolumn plumbing (notably at the flow cell) and with
minimal volume between flow cell and outflow (to minimize time delay, so to
ease collection of sample peaks).

An example design is described by Elicone et al (1). These authors used a 140B
Solvent Delivery System from Applied Biosystems. The system was equipped
with a 75 pL dynamic mixer and a precolumn filter with a 0.5 pm frit (Upchurch
Scientific, Oak Harbor, WA) was plumbed between the mixer and a Rheodyne
7125 injector (from Rainin, Ridgefield, NJ) using two pieces (0.007 inch ID,
27 cmlong [1 in. = 2.54 cm]) of PEEK tubing. The injector was fitted with a 50 pL
loop and connected to the column inlet with PEEK tubing (0.005 inch X 30 cm).
The outlet of the column was connected directly to a glass capillary (280 pm OD/
75 cm ID X 20 cm; 0.88 pL), which is the leading portion of an U-Z view flow
cell (35 nL volume, 8-mm path length; LC Packings, San Francisco, CA), fitted
into an Applied Biosystems 783 detector. The trailing portion of the capillary cell
was trimmed to a 15 cm length and threaded out of the detector head, resulting in
a post flow cell volume of 0.66 puL and a collection delay of 1.3 s (at a flow rate of
30 pL/ min). Alternatively, various HPLC systems suitable for microbore work
are available from commercial sources. .

2. Clean glassware, syringe, and tubes for collection (polypropylene, such as the
0.5 uL or 1.5 pL Eppendorf type).

3. Solvents: use only HPLC-grade reagents (Fisons or other supplier), including
distilled water (commercial HPLC-grade or Milli-Q water). A typical solvent
system would be an increasing gradient of acetonitrile in 0.1% (v/v)
trifluoroacetic acid (TFA) in water. The TFA acts as an ion-pairing reagent,
interacting with positive charges on the polypeptide and generally improving
chromatography. If TFA is not added to the acetonitrile stock, the baseline will
decrease (owing to decreasing overall content of TFA), which makes identifica-
tion of sample peaks more difficult. A level baseline can be maintained by adding
TFA to the acetonitrile stock, in sufficient concentration (usually about 0.09% v/v)
to make its absorbency at 214 or 220 nm equal to that of the other gradient com-
ponent, 0.1% TFA in water. Check this by spectrophotometry. The absorbency
remains stable for days.
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4. Microbore HPLC columns of internal diameter 2.1 mm, 1 mm or less, are avail-
able from various commercial sources.

2.2. Concentration and Desalting of Sample Solutions

1. HPLC system: not necessarily as described above for microbore HPLC, but
capable of delivering a flow rate of a few hundred pL to 1 mL per min. Monitor
elution at 220 nm or 214 nm.

2. Clean syringe, tubes, HPLC-grade solvents, and so on as described in Subhead-
ings 2.1., steps 2 and 3.

3. Reverse-phase HPLC column, of alkyl chain length C2 or C4. Since analysis and
resolution of mixtures of polypeptides is not the aim here, relatively cheap HPLC
columns may be used (and reused). The method described employs the 2.1 mm
ID X 10 mm C2 guard column. (Brownlee, from Applied Biosystems), available
in cartridge format.

2.3. Small Scale Sample Clean-Up Using
Reverse-Phase “Micro-tips”

1. Pipet tip: Eppendorf “gel loader” tip (cat. no. 2235165-6, Brinkman, Westbury,
NY).

2. Glass fiber, such as the TFA-washed glass fibre disks used in Applied Biosystems
automated protein sequencers (Applied Biosystems, cat. no. 499379).

3. Reverse-phase chromatography matrix, such as Poros 50 R2 (PerSeptive
Biosystems, Framingham, MA). Make as a slurry in ethanol, 4:1::ethanol:beads
(vIv).

4. Wash buffer: formic acid (0.1%, v/v in water). Elution buffer: acetonitrile in 0.1%
formic acid, e.g., 30% acetonitrile (v/v).

5. Argon gas supply, at about 10-15 psi pressure, with line suited to attach to the
pipet tip.

6. Micro-tubes: small volume, capped, e.g., 0.2 mL (United Scientific Products,
San Leandro CA, Cat. no. PCR-02).

3. Methods
3.1. Microbore HPLC (see Notes 4-13)
3.1.1. Establishment of Baseline (see Notes 4 and 7)

A flat baseline at high-sensitivity setting (e.g., 15 mAUFs at 214 mm) is
required for optimal peak detection. The use of an optimized HPLC and clean
and UV absorbency-balanced solvents should generate a level baseline with
little noise and peaks of contamination. A small degree of baseline noise origi-
nates from the UV detector. Beware that this may get worse as the detector
lamp ages. Some baseline fluctuation may arise from the action of pumps and/
or solvent mixer. Slow flow rates seem to accentuate such problems that can go
unnoticed at higher flows. Thorough sparging of solvents by helium may
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reduce these problems. New or recently unused columns require thorough washing
before a reliable baseline is obtained. To do this, run several gradients and then
run the starting solvent mixture until the baseline settles (this may take an hour or
more). Such problems are reduced if the column is used continuously, and to
achieve this in between runs, an isocratic mixture of solvents (e.g.. 60% acetoni-
trile) may be run at low flow rate (e.g., 10 pL/min). Check system performance
by running standard samples (e.g., a tryptic digest of 5 pmole of cytochrome C).

3.1.2. Identification of Sample Peaks (see Notes 4, 7, and 8)

1.

Peaks that do not derive from the sample protein(s), may arise from other sample
constituents, such as added buffers or enzymes. To identify these contaminants,
run controls lacking sample protein. Once the sample has been injected, run the
system isocratically in the starting solvent mixture until the baseline is level and
has returned to its pre-inject position. This can take up to 1 h in case of peptide
mixtures that have been reacted with UV-absorbing chemicals (4-vinyl pyridine
for example) before chromatography.

Peaks may be large enough to permit on-line spectroscopy where a diode array is
available. Some analysis of amino acid content by second derivative spectros-
copy may then be undertaken, identifying tryptophan-containing polypeptides,
for instance, as described in Chapter 9.

. Polypeptides containing tryptophan, tyrosine, or pyridylethylcysteine may be

identified by monitoring elution at just three wavelengths (253, 277, 297 nm) in
addition to 214 nm. Ratios of peak heights at these wavelengths indicate content
of the polypeptides as described in Note 8. This approach can be used at the few

" pmole level.

Flow from the HPLC may be split and a small fraction diverted to an on-line
electrospray mass spectrograph, so as to generate information on sample mass as

. well as possible identification of contaminants.

3.1.3. Peak Collection (see Notes 4, 9-12)

1;

While programmable fraction collectors are available, peak collection is most
reliably and flexibly done by hand. This operation is best done with detection of
peaks on a flatbed chart recorder in real time. The use of flatbed chart recorder
allows notation of collected fractions on the chart recording for future reference.
The delay between peak detection and peak emergence at the outflow must be
accurately known (see Note 5).

When the beginning of a peak is observed, remove the forming droplet with a
paper tissue. Collect the outflow by touching the end of the outflow tubing against
the side of the collection tube, so that the liquid flows continuously into the tube
and drops are not formed. Typical volumes of collected peaks are 40—60 pL (from
a 2.1 mm ID column) and 15-30 pL (from a 1 mm ID column). See Note 9.

. Cap tubes to prevent evaporation of solvent. Store collected fractions for a short

term on ice, and transfer to freezer (~20°C or —70°C) for long-term storage (see
Notes 10 and 11).
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4. Retrieval of sample following storage in polypropylene tubes is improved by
acidification of the thawed sample, by addition of neat TFA to a final TFA con-
centration of 10% (v/v).

3.2. Concentration and Desalting of Sample Solutions
(see Notes 14-24)

1. Equilibrate the C2 or C4 reverse-phase HPLC column in 1% acetonitrile (or other
organic solvent of choice) in 0.1% TFA (v/v) in water, at a flow rate of 0.5 mL/min
at ambient temperature.

2. Load the sample on to the column. If the sample is in organic solvent of concen-
tration greater than 1% (v/v), dilute it with water or aqueous buffer (to ensure
that the protein binds to the reverse-phase column) but do this just before loading
(to minimize losses by adsorption from aqueous solution onto vessel walls). If
the sample volume is greater than the HPLC loop size, simply repeat the loading
process until the entire sample has been loaded.

3. Wash the column with isocratic 1% (v/v) acetonitrile in 0.1% TFA in water.
Monitor elution of salts and/or other hydrophilic species that do not bind to the
column. When absorbency at 220 nm has returned to baseline a gradient is applied
to as to elute polypeptides from the column. The gradient is a simple, linear increase
of acetonitrile content from the original 1% to 95%, flow rate 0.5mL/min, ambient
temperature, over 20 min. Collect and store emerging peaks as described above
(see Subheading 3.1.2. and see Note 9).

4. The column may be washed by isocratic 95% acetonitrile in 0.1% TFA in water,
0.5 mL/min, 5 min before being re-equilibrated to 1% acetonitrile for subsequent use.

3.3. Small Scale Sample Clean-up Using “Micro-tips”
(see Notes 25-28).

1. Using a pipet tip, core out a small disk from the glass-fiber disk. Push it down the
inside of the gel-loader tip (containing 20 pL of ethanol), until it is stuck. Pipet
onto this frit 10 UL of reverse-phase matrix slurry (equivalent to about 2 pL of
packed beads). Apply argon gas to the top of the tip, to force liquid through the
tip and pack the beads. Wash the beads by applying 3 lots of 20 pL of 0.1%
formic acid, forcing the liquid through the micro-column with argon, but never
allowing the column to run dry. Use a magnifying glass to check this, if neces-
sary. Leave about 5 mm of final wash above the micro-column. The column is
ready to use.

2. Apply the sample solution to the micro-column and wash with 3 lots of 20 pL
0.1% formic acid, leaving a minimum of the final wash solution above the micro-
column. Pipet 3—4 pL (i.e., about 2 column volumes) of elution buffer into the
micro-tip, leaving a bubble of air between the elution buffer and the micro-col-
umn in ash buffer. The elution buffer is then forced into the micro-column (but
without mixing with the wash buffer, for clearly, this would alter the composi-
tion of the buffer and possibly adversely affect elution). Collect the buffer con-
taining the eluted sample. If further elution steps are required, do not let the



