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Preface

This volume consists mainly of papers presented at two related conferences
held in Wuhan University and the East China Normal University at Shanghai in
the Summer of 2004. Several participants from many institutions throughout the
world attended these international conferences. The conference in Wuhan focused
on recent developments in many areas of several complex variables and partial
differential equations. The conference in Shanghai celebrated the 10th anniversary
of the Institute of Mathematics at East China Normal University and the focus was
complex geometry and related topics. Many researchers attended both conferences
and as a result we decided to publish the proceedings in one volume.

We are very grateful to Wuhan University, the NNSF of China, the State Ed-
ucation Ministry of China and the East China Normal University at Shanghai for
their generous support to host these conferences.

Shiferaw Berhanu
Hua Chen

Jorge Hounie
Xiaojun Huang
Sheng-Li Tan
Stephen S.T. Yau
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Problems on the Monge-Ampere Equation in the Plane

Claudia Anedda and Giovanni Porru

ABSTRACT. We prove that the classical Makar-Limanov function correspond-
ing to a convex solution of the Monge-Ampeére equation in dimension 2 satisfies
an interior maximum principle and an interior minimum principle. Since such
a function is a constant in case the domain is an ellipse, we have a best pos-
sible maximum principle. As application we discuss a special overdetermined
boundary value problem.

1. Introduction

Let Q C R? be a bounded convex domain with a smooth boundary 9, and let
u be the negative (and convex) solution of the Dirichlet problem

(11) U11U22 — UI2U21 = 1 in Q, u=0 on BQ,

where u; denotes partial differentiation with respect to z*, i = 1,2. If H = [ugj] is
the 2 x 2 Hessian matrix associated with u, the Newton matrix T is defined as

(1.2) T — Aul — H,

where Au = uj; + uz2 and I is the unit matrix. If 7' = [T"] one finds
(1.3) TH =g, TR =T2 =4y, T?2?=u.

We prove that the function

(1.4) M = TYuu; — 2u

assumes its maximum value on the boundary 92 and its minimum value either on
the boundary or at a critical point of u. Here and in the sequel the summation
convention over repeated indexes is used. Observe that when (2 is an ellipse then
M is a constant in €2. Therefore, our result is a best possible maximum principle
in the sense of [3]. We apply this maximum principle to discuss the following
overdetermined boundary value problem: find domains €2 such that the solution u
to problem (1.1) satisfies the additional condition

(1.5) TYuuj = c* (c=constant) on ON.

To motivate this unusual boundary condition we describe an optimization problem
in which it arises. We prove that if a convex solution to problem (1.1) exists and
satisfies condition (1.5) then © must be an ellipse. To get this result we follow a

1991 Mathematics Subject Classification. Primary 35B50; Secondary 35J60, 35R35.

Key words and phrases. Monge-Ampeére equation, maximum principles, domain derivative,
overdetermined problems.

(©2006 American Mathematical Society



2 CLAUDIA ANEDDA AND GIOVANNI PORRU

method introduced by H. Weinberger in [11] to discuss the following overdetermined
boundary value problem:
(1.6) ujp +up =1 inQ, u=0o0n 99, |Vu|=con N

In [11] it is proved that if a solution to problem (1.6) exists then € must be a disc.
The same result has been obtained by J. Serrin in [9] by using the moving plane
method.

Using the Monge-Ampere equation (1.1), the function M defined in (1.4) can
be rewritten as
(1.7) M = T (ujuj — wuij).

This function has been introduced by Makar-Limanov in [2], where it is proved that
if u is a solution to the equation w1 +u22 = 1 then the corresponding function (1.7)
attains its maximum value on the boundary of 2. Unfortunately, this interesting
result holds (for the Laplace equation) in dimension two only. At the end of this
paper we propose an extension of the Makar-Limanov function defined for solutions
of a special fully non linear equation.

We emphasize that the function M involves the second derivatives of the so-
lution w. Other functions involving the second derivatives which satisfy a best
possible maximum principle are described in [5], [6]. For functions depending on
u and Vu which satisfy a best possible maximum principle we refer to [3] and [4]
and references therein.

2. Main results

Let © ¢ R? be a bounded convex domain and let u be a smooth solution of the
Monge-Ampere equation

(2.1) U11U22 — UI2U21 = 1 in Q.

Let H be the 2 x 2 Hessian matrix corresponding to u. Since the Newton matrix
T defined as in (1.2) is the cofactor matrix of H, we have T = det(H)H ~!, where
H~! is the inverse matrix of H. Therefore the equation (2.1) implies

(2.2) T'=H""
It follows that -
T u;; = trace(H 'H) = 2.
Hence, the classical Makar-Limanov function (1.7), for solutions to (2.1) can be
rewritten as

(2.3) M = T9u;u; — 2u.
LEMMA 2.1. If u satisfies the Monge-Ampére equation (2.1) then we have
T Mpy, = T (T puiu;.
Proor. We find
My, = (T9)puiuj + 2T uinu; — 2up.
Since by (2.2) TH = I, we have
2T uipu; = 26)uj = 2up,
where 5{1 is the usual Kronecker delta. Therefore,

(2.4) ]\[h = (Tij)huiuj.
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If we derive with respect to z* we find
(2.5) Mk = (TY) prusuy + 2(T ) puinu;.
Now, using (2.2) and since
(TY); = (Au); 8} — uiji = (Au); — (Au); =0,
we find
TR s = SR Yy = (T = b
The lemma follows by using (2.5) and the previous equations. O

THEOREM 2.2. If u is a convex solution to the Monge-Ampére equation (2.1)
in a domain Q C R? then the function M defined in (2.3) assumes its mazimum
value on 0X), and its minimum value either on OS2 or at the point where u attains
its manimum.

PROOF. Recalling that
T — oy, T2 =T2 = _yyy, T2 =y,
Lemma 2.1 yields
T My, = T"*ugonk (u1)? — 2T uionk urus + T urink (u2)?
= (u2ou1122 — 2u12U1222 + UT1U2222) (u1)?
— 2(ugoui112 — 2U12U1122 + U11U1222) UL U
+ (ug2u1111 — 2u12u1112 + Ur1u1122) (U2)?.

By equation (2.1) we find

(2.6) U111U22 + Ur22U11 — 2Uy12U12 = 0,
and
(2.7) U12U22 + UgooU11 — 2U122uU12 = 0.

Further differentiation yields
ur111Uze + 2u111U122 + U11UI122 — 2U112U112 — 2U12U1112 = 0,
Ur112U22 + U111U202 — UT12U122 + UT1UI222 — 2U12U1122 = 0,
Ui122U22 + 2U112U202 + UT1U2222 — 2U122U122 — 2U2U1202 = 0.
Using the last three equations, we find
(2.8) ThE My = 2(u122u122 — u112u222)(u1)2
— 2(u112u122 — U111U222)U U2 + 2(U112U112 — u111U122)(u2)2-
By (2.4) we have
M = ug01(u1)? — 2uriourus + i (u2)?,
Mo = ug22(u1)? — 2uinourus + uri2(uz2)?.

These two equations together with (2.6) and (2.7) give a system of four linear
equations with four unknowns wy11, u112, 122 and usze. By computation one finds

that the determinant of the corresponding coefficients equals (7" uiuj)z. Therefore,
solving such a system and using (2.8) we find

T My, = B* M, My,
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where B" are regular functions for 7% u;u; # 0. Since the solution u is assumed to
be convex, the matrix [T"*] is positive definite. By the classical maximum principle
[7] we infer that M (z) attains its maximum and its minimum values either on 0f2
or at the point in 2 with Vu = 0. Since u(z) is convex, if we have Vu = 0 at
zo € Q then zq is the point of minimum of u(x).

We prove now that M (z) must assume its maximum value on 0f2. Arguing by
contradiction, let zo € €2 such that

M (zo) > max M (z).

With € > 0 small we may suppose that M (z) = M (z) + e(z! — 2})? satisfies
M (z0) > M(z).
(x0) > max M(z)

Then, M (z) attains its maximum value at some interior point # and

(2.9) THM, <0 at Z.
On the other hand, one finds easily that
(2.10) Ththk = ThkAfhk + 2€ug9 > Thk]\/[hk.

In the last step we have used the inequality uss > 0, true because u(x) is convex.
Let us perform a suitable rotation

z—%=C(y—%):R?— R?
so that the mixed derivative u;o with respect to the new variables (y!, y?) vanishes
at . We have
CCt=1I, y—-&=C%=z—%), Vu=CDu,
where Du denotes the gradient of u with respect to the new variables (y!,y?).
Similarly, if V2u (resp. D?u) denotes the Hessian matrix of u with respect to

(', 22) (resp. (y*,%?)) and if T(V2u) (resp. T'(D?u)) denotes the Newton tensor
corresponding to V2u (resp. D?u) we find

Viy=CD%uCt, T(Va)=CT(D*)C".
As a consequence,
M(z) = (Vu)'T(Viu)Vu — 2u
= (Du)'C*T(V*u)C Du — 2u
= (Du)'T(D*u)Du — 2u = M(y).
Furthermore,
T (V2u) My (z) = tr{T(V*u)V2M}
= tr{CT(D*u)C*V>M} = tr{T(D?*u)C*'V>MC}
= tr{T(D?*u)D*M} = T"*(D?u) Mui(y).
It follows that equations (2.1), (2.6), (2.7) and (2.8) remain the same after the

change of variables. In terms of the new variables we have 115 = 0 and uyju = 1
at &. Then, (2.6) and (2.7) yield

(2.11) upr1Uee + uiz2u1y =0,  uiioug + uzgouy; = 0.
Equations (2.11) imply that

U112U122 — Ur11U222 = 0.
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Therefore, the coefficient of ujus in (2.8) vanishes. Moreover, by the first equation
in (2.11) we find

i1tz + (Unn1uz2)® + (u122u11)” = 0.
Similarly, by the second equation in (2.11) we find

2uy12uze + (Un12u22) + (uz22u11)?® = 0.
Using the last equations, by (2.8) we get
(2.12) TN

= [2(u122)® + (wr12u22)” + (u222u11)?] (u1)?
+[2(u112)? + (ur11u22)? + (w122u11)?)(u2)* > 0.
Hence, (2.10) implies that
T"* M, >0  at Z.

The last inequality contradicts (2.9) and the proof is completed. O

LEMMA 2.3. If Q is conver and smooth, if v denotes the exterior unit normal
to 02 and if u is a convex solution of the Dirichlet problem

U11U22 — UI2U2] = 1 Q, u=0 on 39,

then we have

/ xzueTijuiuj ds = 8/ (—u) dz.
a0 Q

PROOF. Since u(z) = 0 on 0%, if v = (v',v?) we have v/ = FZ; on Q. Using
this fact and the Green formula we find

/ xeueTijuiuj ds = / zlugTu ds = / (x‘ZUgTijui) dx
a0 o0 Q J

= / TYu;u; dx +/ xlug; TYw; dx +/ xu, (TY) u; dx +/ ttugTu;; dr.
Q Q Q * 0
Since T' = H~! we have u,;T% = §,. We also recall that (Tij)j = 0. Using the
Monge-Ampere equation we find

i
T ]uij = 2(u11u22 — u12u21) e 2

Hence,
/ :L'eueTijuiuj ds = / Tijuiuj d:r+3/ xew dz.
El9) Q Q
Since
/Tijuiujdzz—/Tijuijudx: —2/ udz
Q Q Q
and

/z:ewd:tz —/(Ie)[u,dIZ —2/ udx,
Q Q Q

the lemma follows. O
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THEOREM 2.4. If there exists a convex solution u to the Dirichlet problem

(213) U11U22 — UI2U21 = 1 n Q, u=0 on o)
in a bounded convex domain Q C R?, and if it satisfies the additional condition
(2.14) TY9uu; =c®*  on 09

then 2 must be an ellipse. Here c is a positive constant.

PROOF. By Lemma 2.3 we have

/ eV T uu; ds = 8/ (—u) dz.
1) Q
Using (2.14) we find

/ eV T uu; ds = c2/ bl ds = 2 / (z%),dz = *2A(Q)
a0 aQ Q
where A(2) denotes the Lebesgue measure of 2. Hence,

(2.15) 2AQ) =4/(—u) dz.

Q
On the other side, using the maximum principle for M proved in Theorem 2.2 and
our boundary conditions we find

(2.16) / T u;u; dr + 2/ (—u)dz < A(Q).
Q Q
Integration by parts and use of (2.13) yield
(2.17) /Tijuiu]- iy = —/ TYu;judz = 2/(—u) dz.
Q Q Q

Hence, (2.16) can be rewritten as

=U 503 C2 =
4/9( )de < PAQ)

Comparing the last equation with (2.15) we infer that equality must hold in (2.16).
Recalling Theorem 2.2 we deduce that M (z) must be a constant in 2. But then
the quadratic form (2.8) must vanish. At a point where u;2 = 0, (2.8) becomes
(2.12). If uy # 0 we find
Ur2e = Ur12 = ugez = 0.

By the first of (2.11) we also find uy1; = 0. If uy # 0, by (2.12) and the second of
(2.11) we again find that all third derivatives of u vanish. If u;5 # 0 we can perform
a suitable rotation in order to have w12 = 0 in terms of the new variables. One
proves that all third derivatives with respect to the new variables vanish. But then,
also the third derivatives with respect to the old variables must vanish provided
that |[Vu| > 0. Because u is assumed to be convex, the gradient vanishes at one
point only (the point of minimum). At that point the third derivatives must vanish
for continuity reasons. Therefore we have

U111 = U112 = U122 = U2 =0 in Q.

By
U111 = u12 =0
we find u1; = a. This equation together with w195 = 0 yield

uy = azx! + bz + ¢,
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where a, b and ¢ are constants and z', 22 are the coordinates of a point in .
Finally, since u200 = 0 we find
u = ay(z!)? + agx'z? + a3(z?)? + bz’ + box® + c.

Since u = 0 on 992 and since €2 is bounded, it follows that 2 must be an ellipse. O

REMARK 2.5. Let us make a comment on the boundary condition (2.14). Fol-
lowing [10], let V = V(z) : R? — R? be a C? vector field, let ¢ be a real number and
let Qf = (Id + tV)(Q2), where Id denotes the identity map. If Q is strictly convex
and |¢| is small, also Q! is convex. If u* = ugq: is the convex solution to problem
(2.13) with Q replaced by Q! and if

JIF) = 2/ (—ut)dz, J(Q)=2 [ (—u)dz,
Qt Q
the domain derivative of J(£2) in the direction of V is defined as
J(Q) — J(2)
——
Furthermore, the derivative u/(z) in the direction of V' is defined by

dJ(%;V) = lim

, ut(x) — u(z)
sl = ————

In [10] (pag. 680) the following boundary value of /() is found:
(2.18) u'(z) = —%(V -v) on Of.

As usual, v denotes the exterior unit normal to 9€2. Since u = 0 on 0f2, the
derivative of J(2) in the direction V is given by [10]

(2.19) dJj(; V) = 2/{1(—u')dz.

By equation (2.13) we find
U U2 + U Uy — UloU21 — Us2uy; = 0.
Multiplying by u and integrating over €2, the last equation yields
(2.20) / T u), dz = 0.
Q

By equation (2.13) we also have

—ulTij’U.ij = —2u'.
Integrating over €2 we find

(—u) T w07 ds + /
89 Q

Since %‘31/1 = u; on 0F2, using (2.18) and (2.20) we find

T wuj do = 2/ (—u) dx.
Q

Tijuiuj(V~u)ds=2/(—u’)d:z.

N Q

Insertion of the last result into (2.19) leads to

(2.21) dJ(V) = /

T uui(V - v)ds.
a0
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On the other hand, if A(2) denotes the Lebesgue measure of 2 we have
dA(Q; V) = / (V -v)ds.
a0

Hence, by (2.21) we find

dJ(Q; V) = 2dA(Q; V)
for all displacement field V' if and only if condition (2.14) holds. Therefore, condition
(2.14) is related with the critical points of the functional © — J(€) under the
condition A() = constant.

3. An open problem

If u(z) is a smooth function defined in a domain Q2 C RY, if H is the Hessian
matrix [u;;] and if k is an integer with 1 < k& < N, denote with S(x(u) the k-th
elementary symmetric function of the eigenvalues of H. The problem

(3.1) Sky(w)=1 inQ, wu=0 onodQ,

has been discussed, for example, in [1]. For £ = 1 we have the well known equation
Au=1. For 1 < k < N, problem (3.1) has a (negative) smooth solution provided
(2 satisfies a suitable convexity condition [1]. A natural extension of the boundary
condition (1.5) for problem (3.1) is

(3.2) T(g_l)uiuj =c2 on 89,
where a5
ij  _ Y9k
Ty = sy
Note that T(ig) = 5%, the familiar Kronecker delta. Therefore, for & = 1, condition
(3.2) reduces to |[Vu| = ¢, used in [9] and in [11]. For 1 < k < N, the Newton
tensor T(x) = [T(})] is well known in differential geometry [8] and satisfies

(33) T(Z,'Z:) = F (]11 . ]:J)ulljl C WU gy
where the generalized Kronecker symbol (;:;:;) has the value 1 (respectively —1)
if the indexes i1, - ,i,% are distinct and (j1,---,Jk,J) is an even (respectively
odd) permutation of (iy,--- ,ix,%), otherwise it has value zero. Recall that the
summation convention over repeated indexes from 1 to N is understood.

The boundary condition (3.2) arises investigating the critical points of the
functional

J(£2) :k/Q(—u)dx

for small deformations of €2 under the condition that the measure of € is a constant
(10].

To investigate the overdetermined problem (3.1)-(3.2), it would be useful an
interior maximum principle for the function
(3.4) M(x)

]
T(k_l)uiuj - —u,

B k
B N
where u = u(z) is a solution to (3.1). A maximum principle for M (z) when k = 1
is well known (see, for example, [3] and [4]), and for N = k = 2 it is proved in this

paper.
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Let us show that M(x) is a constant when 2 is a ball. In this situation, the

solution to problem (3.1) is radial and, if » = |z| and if R is the radius of the ball,
we have

_% N —% /
u(r) = %(1121) (r2—R?), u'= <k) r, u' = UT

Moreover H is now a scalar matrix H = %’I . Therefore, using (3.3) we find

1, 1 1 gy v dg=1l PUNELpaND . Lo
27 (k=) it _§(k—l)!(i1-~-ik_1i)(r) (r) (@)
=5(aop)ere
Finally,
1
AN =1 g B LB INY R
I\I(z)-—2(k_1>(u) r V= 3w\ & R:.
We have found that M(z) is a constant in the ball.
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GLOBAL SOLVABILITY FOR A SPECIAL CLASS OF
VECTOR FIELDS ON THE TORUS

Adalberto P. Bergamasco and Paulo L. Dattori da Silva

ABSTRACT. We study the global solvability of a class of complex vector fields
on the two-torus. For L = 9/dt + (a(x) + ib(x))d/0x, a,b € C®(T;R), we
show that a necessary condition for L to be strongly solvable is that each zero
of a + ib is of finite order. We say that L is strongly solvable if the image of
operator L : C®(T?) — C°°(T?) is closed and has finite codimension. One
of the main points of our work is to shed light on the interplay between the
orders of vanishing of @ and b at each common zero, which is crucial for strong
solvability of L.

1. Introduction

Let K be a compact subset of a smooth manifold X. As in Hérmander [H2],
we say that a differential operator P(xz, D) in X is solvable at K if the equation
P(xz,D)u = f is satisfied near K for some distribution u € D'(X) for every f
belonging to a finite codimensional subspace of C'>(X).

In the present work, we deal with a related concept, namely, the operator P
is said to be strongly solvable in C*>°(X) if the range of P : C*°(X) — C>(X)
is closed and has finite codimension. We will also refer to the following weaker
notion: the operator P is said to be globally solvable in C'°°(X) if the range of
P:C>®(X) — C*(X) is closed.

We will study a class of complex vector fields on the two-torus T2, of the special
form

{1.1) L = 0/0t + (a(zx) + ib(x))d/0x, a,be€ C®(T';R),
and we will present necessary conditions and sufficient conditions for the strong
solvability in C>°(T?) of the vector field L.

We proceed to describe some of the known results, and we begin with the case
b = 0. In [BP] the subject of study was the global solvability of L = 9/dt+a(x)d/dx;
on the other hand, the strong solvability was not considered. In this case, by using
some of the arguments that will appear later on in the present work, it is possible
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