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Preface

The idea for this book grew out of a course given at a winter school of the In-
ternational Doctoral Program “Identification, Optimization and Control with Ap-
plications in Modern Technologies™ in Schloss Thurnau in March 2009. Initially,
the main purpose of this course was to present results on stability and performance
analysis of nonlinear model predictive control algorithms, which had at that time
recently been obtained by ourselves and coauthors. However, we soon realized that
both the course and even more the book would be inevitably incomplete without
a comprehensive coverage of classical results in the area of nonlinear model pre-
dictive control and without the discussion of important topics beyond stability and
performance, like feasibility, robustness, and numerical methods.

As a result, this book has become a mixture between a research monograph and
an advanced textbook. On the one hand, the book presents original research results
obtained by ourselves and coauthors during the last five years in a comprehensive
and self contained way. On the other hand, the book also presents a number of
results—both classical and more recent—of other authors. Furthermore, we have
included a lot of background information from mathematical systems theory, op-
timal control, numerical analysis and optimization to make the book accessible to
graduate students—on PhD and Master level—from applied mathematics and con-
trol engineering alike. Finally, via our web page www.nmpc-book.com we provide
MATLAB and C++ software for all examples in this book, which enables the reader
to perform his or her own numerical experiments. For reading this book, we assume
a basic familiarity with control systems, their state space representation as well as
with concepts like feedback and stability as provided, e.g., in undergraduate courses
on control engineering or in courses on mathematical systems and control theory in
an applied mathematics curriculum. However, no particular knowledge of nonlin-
ear systems theory is assumed. Substantial parts of the systems theoretic chapters
of the book have been used by us for a lecture on nonlinear model predictive con-
trol for master students in applied mathematics and we believe that the book is well
suited for this purpose. More advanced concepts like time varying formulations or
peculiarities of sampled data systems can be easily skipped if only time invariant
problems or discrete time systems shall be treated.

vii



viii Preface

The book centers around two main topics: systems theoretic properties of nonlin-
ear model predictive control schemes on the one hand and numerical algorithms on
the other hand; for a comprehensive description of the contents we refer to Sect. 1.3.
As such, the book is somewhat more theoretical than engineering or application ori-
ented monographs on nonlinear model predictive control, which are furthermore
often focused on linear methods.

Within the nonlinear model predictive control literature, distinctive features of
this book are the comprehensive treatment of schemes without stabilizing terminal
constraints and the in depth discussion of performance issues via infinite horizon
suboptimality estimates, both with and without stabilizing terminal constraints. The
key for the analysis in the systems theoretic part of this book is a uniform way
of interpreting both classes of schemes as relaxed versions of infinite horizon op-
timal control problems. The relaxed dynamic programming framework developed
in Chap. 4 is thus a cornerstone of this book, even though we do not use dynamic
programming for actually solving nonlinear model predictive control problems; for
this task we prefer direct optimization methods as described in the last chapter of
this book, since they also allow for the numerical treatment of high dimensional
systems.

There are many people whom we have to thank for their help in one or the other
way. For pleasant and fruitful collaboration within joint research projects and on
joint papers—of which many have been used as the basis for this book—we are
grateful to Frank Allgower, Nils Altmiiller, Rolf Findeisen, Marcus von Lossow,
Dragan Nesi¢, Anders Rantzer, Martin Seehafer, Paolo Varutti and Karl Worthmann.
For enlightening talks, inspiring discussions, for organizing workshops and mini-
symposia (and inviting us) and, last but not least, for pointing out valuable references
to the literature we would like to thank David Angeli, Moritz Diehl, Knut Graichen,
Peter Hokayem, Achim Ilchmann, Andreas Kugi, Daniel Limén, Jan Lunze, Lalo
Magni, Manfred Morari, Davide Raimondo, Sasa Rakovi¢, Jorg Rambau, Jim Rawl-
ings, Markus Reble, Oana Serea and Andy Teel, and we apologize to everyone who
is missing in this list although he or she should have been mentioned. Without the
proof reading of Nils Altmiiller, Robert Baier, Thomas Jahn, Marcus von Lossow,
Florian Miiller and Karl Worthmann the book would contain even more typos and
inaccuracies than it probably does—of course, the responsibility for all remaining
errors lies entirely with us and we appreciate all comments on errors, typos, miss-
ing references and the like. Beyond proof reading, we are grateful to Thomas Jahn
for his help with writing the software supporting this book and to Karl Worthmann
for his contributions to many results in Chaps. 6 and 7, most importantly the proof
of Proposition 6.17. Finally, we would like to thank Oliver Jackson and Charlotte
Cross from Springer-Verlag for their excellent support.

Bayreuth, Germany Lars Griine
April 2011 Jiirgen Pannek



Contents

1 Imtroduction. . . . . . . .. . ... ... 1
1.1 What Is Nonlinear Model Predictive Control? . . . . . ... ... 1

1.2 Where Did NMPC Come from? . . . . ... ... .. ....... 3

1.3 How Is This Book Organized? . . . . ... ... ... ....... 5

1.4 WhatIs Not Covered in This Book? . . . . .. ... ... ..... 9
References . . . . . . . . . . e 10

2 Discrete Time and Sampled Data Systems . . . . .. .. .. ... .. 13
2.1 Discrete TimeSystems. . . . . . .« oo v v v v i v w e oo 13

22 Sampled DataSystems. . . . . .. ... ... ... ... 16

2.3 Stability of Discrete Time Systems . . . . . .. ... ... .. .. 28

2.4 Stability of Sampled Data Systems . . . . . ... ... ... ... 35

2.5 Notes and Extensions . . . . . e e e e e e e e e e e e 39

2.6 Problems . . . . . . ... e e 39
References . . . . . . . . . . .. 41

3 Nonlinear Model Predictive Control . . . . .. .. ... ... .... 43
3.1 The Basic NMPC Algorithm . . . . .. .. .. ... ....... 43

3.2 ConStraints . . . . . v v i e e e e e e 45

3.3 Variants of the Basic NMPC Algorithms . . . ... ... ... .. 50

3.4 The Dynamic Programming Principle . . . . . . .. .. ... ... 56

3.5 Notesand Extensions . . . . . . . .. .. ... 62

36 Problems . i - s v com s s 3 5 5 B Eom B s e i m s 64
References . . . . . . . . . . . ... 65

4 Infinite Horizon Optimal Control . . . . . . . ... .. ... ... .. 67
4.1 Definition and Well Posedness of the Problem . . .. .. .. ... 67

4.2 The Dynamic Programming Principle . . . . . ... ... ... .. 70

4.3 Relaxed Dynamic Programming . . . . . ... ... ... ..... 75

4.4 Notes and Extensions . . . . . . . . . ... 81

45 Problems : : i s 5« 26 56 5 5 5 Fewim mme s s ow e s 83
References . . . . . . . . . . . ... 84



Contents

Stability and Suboptimality Using Stabilizing Constraints . . . . . . 87
5.1 The Relaxed Dynamic Programming Approach . . . . . . . . . .. 87
5.2 Equilibrium Endpoint Constraint . . . . . .. ... ... ..... 88
5.3 Lyapunov Function Terminal Cost . . . . . . . ... ... ..... 95
5.4 Suboptimality and Inverse Optimality . . . . . . . . ... ... .. 101
5.5 Notes and Extensions . . . . . . .. ... 109
56 Problei§ . : « o s s mwms 3 s 8 spmEars s s s BB E Ea s b 110

REETEBACES . . & s ww i simiv ¢ o s mm @ s ms 6 0 ¢ 66 5 G ws 5o 112
Stability and Suboptimality Without Stabilizing Constraints . . . . . 113
6.1 Setting and Preliminaries . . . . . . ... ... ... .. ... .. 113
6.2 Asymptotic Controllability with Respectto ¢ . . . . . .. ... .. 116
6.3 Implications of the Controllability Assumption . . . . . . . .. .. 119
6.4 Computationof o . . . . . . ... ... 121
6.5 Main Stability and Performance Results . . . . . . . ... .. ... 125
6.6 Design of Good Running Costs ¢ . . . . . .. .. ... ...... 133
6.7 Semiglobal and Practical Asymptotic Stability . . . . ... .. .. 142
6.8 Proof of Proposition 6.17 . . . . . ... ... ... ... 150
6.9 Notes and Extensions . . . . . . .. ... ... ... ... 159
6:10 PrODISIS . 2N « o v m s s 58 o s s mm a @ w o o 5w @ E e s s 161

References . . . . ... .. GRS R @R E G e EE & 162
Variants and Extensions . . . . . . . . . ... ... ... ....... 165
7.1 Mixed Constrained—Unconstrained Schemes . . . . . . . ... .. 165
7.2 Unconstrained NMPC with Terminal Weights . . . . . . ... .. 168
7.3 Nonpositive Definite Running Cost . . . . . . .. ... ... ... 170
7.4 Multistep NMPC-Feedback Laws . . . . . .. ... ... ..... 174
7.5 FastSampling . .. ... ... ... L 176
7.6 Compensation of Computation Times . . . . . . ... ... .... 180
7.7 Online Measurementof ov . . . . . . .. ... ... ... ..... 183
7.8 Adaptive Optimization Horizon . . . . . . . . ... ... ..... 191
7.9 Nonoptimal NMPC . . . . ... ... ... ... . ...... 198
7.10 Beyond Stabilization and Tracking . . . . .. ... ... ..... 207

REfErences  « v s v+ s summuwns s 5 6o ms s sdimens 209
Feasibility and Robustness . . . . . . . . .. ... ... .. ...... 211
8.1 The Feasibility Problem . . . . ... ... .. ... ... ... .. 211
8.2 Feasibility of Unconstrained NMPC Using Exit Sets . . . . . . .. 214
8.3 Feasibility of Unconstrained NMPC Using Stability . . . ... .. 217
8.4 Comparing Terminal Constrained vs. Unconstrained NMPC . . . . 222
8.5 Robustness: Basic Definition and Concepts . . . . . . .. ... .. 225
8.6 Robustness Without State Constraints . . . . . . .. ... ... .. 227
8.7 Examples for Nonrobustness Under State Constraints . . . . . . . 232
8.8 Robustness with State Constraints via Robust-optimal Feasibility . 237
8.9 Robustness with State Constraints via Continuity of Vyy . . . . . . 241
8.10 Notes and Extensions . . . . . . . ... .. .. ... ....... 246
8.11 Problems . . . . . . .. . ... 249

References . . . . . . . . . . . . . ... .. 249



Contents Xi

9  Numerical Discretization . . . . . . ... ... ... .......... 251
9.1 Basic Solution Methods . . . . .. ... ... ... ... 251

9.2 Convergence Theory . . . . . . ... ... ... ... ... ... . 256

9.3 Adaptive Step Size Control . . . . . . ... 260

9.4 Using the Methods Within the NMPC Algorithms . . . . . .. .. 264

9.5 Numerical Approximation Errors and Stability . . . . . ... ... 266

9.6 Notes and Extensions . . . . . . . ... ... ... 269

9.7 Problems . . . . . .. e 271
References . . . . . . . . . . . . . ... 272

10 Numerical Optimal Control of Nonlinear Systems . . . . . . . .. .. 275
10.1 Discretization of the NMPC Problem . . . . . ... ... ..... 275

10.2 Unconstrained Optimization . . . . . . . . . . .. .. .. .. ... 288

10.3 Constrained Optimization . . . . . . . . ... ... ... ... .. 292

10.4 Implementation Issues in NMPC . . . . ... ... ... ... .. 315

10.5 Warm Start of the NMPC Optimization . . . . .. ... ... ... 324

10.6 Nonoptimal NMPC . . . . . ... ... ... ... ....... 331

10.7 Notes and Extensions . . . . . ... .. ... ... ........ 335

108 Problems . . . c s m s o 5 5 5 sdmmm i s 4 5 s 8w aE s 6 & 337
References : : s v s ws o s s 5 wamme s s s s s@msas s 337
Appendix NMPC Software Supporting This Book . . . . . . ... . .. 341
A.l The MATLAB NMPC Routine . . . . . ... ... ........ 341

A.2 Additional MATLAB and MAPLE Routines . . . . .. ... ... 343

A3 The C++NMPC Software . . . . . ... ... ... ... ..... 345
Glossary . . . . . . e 347

Index . . . . . . . e 353



Chapter 1
Introduction

1.1 What Is Nonlinear Model Predictive Control?

Nonlinear model predictive control (henceforth abbreviated as NMPC) is an opti-
mization based method for the feedback control of nonlinear systems. Its primary
applications are stabilization and tracking problems, which we briefly introduce in
order to describe the basic idea of model predictive control.

Suppose we are given a controlled process whose state x () is measured at dis-
crete time instants 7,, n =0, 1,2, .... “Controlled” means that at each time instant
we can select a control input u(n) which influences the future behavior of the state
of the system. In tracking control, the task is to determine the control inputs u(n)
such that x () follows a given reference x™'(n) as good as possible. This means that
if the current state is far away from the reference then we want to control the system
towards the reference and if the current state is already close to the reference then
we want to keep it there. In order to keep this introduction technically simple, we
consider x(n) € X =R? and u(n) € U = R, furthermore we consider a reference
which is constant and equal to x4 = 0, i.e., x™'(n) = x, = 0 for all n >0. With such
a constant reference the tracking problem reduces to a stabilization problem; in its
full generality the tracking problem will be considered in Sect. 3.3.

Since we want to be able to react to the current deviation of x(n) from the ref-
erence value x, = 0, we would like to have u(n) in feedback form, i.e., in the form
u(n) = p(x(n)) for some map p mapping the state x € X into the set U of control
values.

The idea of model predictive control—linear or nonlinear—is now to utilize a
model of the process in order to predict and optimize the future system behavior. In
this book, we will use models of the form

xt=fx,u) (1.1)

where f: X x U — X is a known and in general nonlinear map which assigns to a
state x and a control value u the successor state x at the next time instant. Starting
from the current state x (), for any given control sequence u(0), ..., u(N — 1) with

L. Griine, J. Pannek, Nonlinear Model Predictive Control, |
Communications and Control Engineering,
DOI 10.1007/978-0-85729-501-9_1, © Springer-Verlag London Limited 201 |



2 1 Introduction

horizon length N > 2, we can now iterate (1.1) in order to construct a prediction
trajectory x, defined by

x(0)=x(n),  x,k+1)= f(x,(k),uk)), k=0,....N—1. (1.2)

Proceeding this way, we obtain predictions x, (k) for the state of the system x (n + k)
at time f,44 in the future. Hence, we obtain a prediction of the behavior of the sys-
tem on the discrete interval 1, ..., 7,4y depending on the chosen control sequence
u(0),...,u(N —1).

Now we use optimal control in order to determine u(0), ..., u(N — 1) such that
x, 1s as close as possible to x, = 0. To this end, we measure the distance between
xu(k) and x, =0 for k =0,..., N — 1 by a function €(x,(k), u(k)). Here, we not
only allow for penalizing the deviation of the state from the reference but also—if
desired—the distance of the control values u (k) to a reference control u,, which
here we also choose as u, = 0. A common and popular choice for this purpose is
the quadratic function

£(xu k), u(0) = |2 o) |* + A Jute) |,

where || - || denotes the usual Euclidean norm and A > 0 is a weighting parameter
for the control, which could also be chosen as 0 if no control penalization is desired.
The optimal control problem now reads

2

minimize J(x(n),u(-)) := €(xy (k) u(k))
0

=~
Il

with respect to all admissible! control sequences u(0),...,u(N — 1) with x, gen-
erated by (1.2).

Let us assume that this optimal control problem has a solution which is given by
the minimizing control sequence u*(0), ..., u*(N — 1), i.e.,

N-—1
u(0), ..., ;?N—I)J(X(n)'u(.)):Ige(xu'(k),ll (k))

In order to get the desired feedback value j(x(n)), we now set p(x(n)) :=u*(0),
i.e., we apply the first element of the optimal control sequence. This procedure is
sketched in Fig. 1.1.

At the following time instants 7,4, f;+2, ... we repeat the procedure with the
new measurements x(n + 1), x(n + 2), ... in order to derive the feedback values
ulx(m+ 1)), u(x(n +2)),.... In other words, we obtain the feedback law p by
an iterative online optimization over the predictions generated by our model (1.1).2
This is the first key feature of model predictive control.

!"The meaning of “admissible” will be defined in Sect. 3.2.

2 Attentive readers may already have noticed that this description is mathematically idealized since
we neglected the computation time needed to solve the optimization problem. In practice, when the
measurement x(n) is provided to the optimizer the feedback value y(x(n)) will only be available
after some delay. For simplicity of exposition, throughout our theoretical investigations we will
assume that this delay is negligible. We will come back to this problem in Sect. 7.6.
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past current time prediction horizon

pastizsjeciiy b : : optimal predicted irajectory X (k)
M ?-.“‘$.;__;____.V--,§_~__;\ :
: : ‘current : ! : ; : Y
state x(n) feedback value gt (x(n)) = u*(0):

. past feedback values : ! S

............

th It In+N

Fig. 1.1 Tllustration of the NMPC step at time ¢,

From the prediction horizon point of view, proceeding this iterative way the

trajectories x,(k), k = 0,..., N provide a prediction on the discrete interval
Ins ..., Ip+n attime 1, on the interval #,,1, ..., 4N +1 at time 7,41, on the interval
Int2, - .- N2 at time 1,42, and so on. Hence, the prediction horizon is moving

and this moving horizon is the second key feature of model predictive control.

Regarding terminology, another term which is often used alternatively to model
predictive control is receding horizon control. While the former expression stresses
the use of model based predictions, the latter emphasizes the moving horizon idea.
Despite these slightly different literal meanings, we prefer and follow the common
practice to use these names synonymously. The additional term nonlinear indicates
that our model (1.1) need not be a linear map.

1.2 Where Did NMPC Come from?

Due to the vast amount of literature, the brief history of NMPC we provide in this
section is inevitably incomplete and focused on those references in the literature
from which we ourselves learned about the various NMPC techniques. Furthermore,
we focus on the systems theoretic aspects of NMPC and on the academic develop-
ment; some remarks on numerical methods specifically designed for NMPC can be
found in Sect. 10.7. Information about the use of linear and nonlinear MPC in prac-
tical applications can be found in many articles, books and proceedings volumes,
e.g.,in [15, 22, 24].

Nonlinear model predictive control grew out of the theory of optimal control
which had been developed in the middle of the 20th century with seminal contri-
butions like the maximum principle of Pontryagin, Boltyanskii, Gamkrelidze and
Mishchenko [20] and the dynamic programming method developed by Bellman
[2]. The first paper we are aware of in which the central idea of model predictive
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control—for discrete time linear systems—is formulated was published by Propoi
[21] in the early 1960s. Interestingly enough, in this paper neither Pontryagin’s max-
imum principle nor dynamic programming is used in order to solve the optimal con-
trol problem. Rather, the paper already proposed the method which is predominant
nowadays in NMPC, in which the optimal control problem is transformed into a
static optimization problem, in this case a linear one. For nonlinear systems, the
idea of model predictive control can be found in the book by Lee and Markus [14]
from 1967 on page 423:

One technique for obtaining a feedback controller synthesis from knowl-
edge of open-loop controllers is to measure the current control process state
and then compute very rapidly for the open-loop control function. The first
portion of this function is then used during a short time interval, after which
a new measurement of the process state is made and a new open-loop con-
trol function is computed for this new measurement. The procedure is then
repeated.

Due to the fact that neither computer hardware nor software for the necessary “very
rapid” computation were available at that time, for a while this observation had little
practical impact.

In the late 1970s, due to the progress in algorithms for solving constrained linear
and quadratic optimization problems, MPC for linear systems became popular in
control engineering. Richalet, Rault, Testud and Papon [25] and Cutler and Ramaker
[6] were among the first to propose this method in the area of process control, in
which the processes to be controlled are often slow enough in order to allow for
an online optimization, even with the computer technology available at that time.
It is interesting to note that in [25] the method was described as a “new method
of digital process control” and earlier references were not mentioned; it appears
that the basic MPC principle was re-invented several times. Systematic stability
investigations appeared a little bit later; an account of early results in that direction
for linear MPC can, e.g., be found in the survey paper of Garcia, Prett and Morari
[10] or in the monograph by Bitmead, Gevers and Wertz [3]. Many of the techniques
which later turned out to be useful for NMPC, like Lyapunov function based stability
proofs or stabilizing terminal constraints were in fact first developed for linear MPC
and later carried over to the nonlinear setting.

The earliest paper we were able to find which analyzes an NMPC algorithm sim-
ilar to the ones used today is an article by Chen and Shaw [4] from 1982. In this
paper, stability of an NMPC scheme with equilibrium terminal constraint in contin-
uous time is proved using Lyapunov function techniques, however, the whole opti-
mal control function on the optimization horizon is applied to the plant, as opposed
to only the first part as in our NMPC paradigm. For NMPC algorithms meeting this
paradigm, first comprehensive stability studies for schemes with equilibrium termi-
nal constraint were given in 1988 by Keerthi and Gilbert [13] in discrete time and
in 1990 by Mayne and Michalska [17] in continuous time. The fact that for non-
linear systems equilibrium terminal constraints may cause severe numerical diffi-
culties subsequently motivated the investigation of alternative techniques. Regional
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terminal constraints in combination with appropriate terminal costs turned out to
be a suitable tool for this purpose and in the second half of the 1990s there was
a rapid development of such techniques with contributions by De Nicolao, Magni
and Scattolini [7, 8], Magni and Sepulchre [16] or Chen and Allgéwer [5], both in
discrete and continuous time. This development eventually led to the formulation
of a widely accepted “axiomatic” stability framework for NMPC schemes with sta-
bilizing terminal constraints as formulated in discrete time in the survey article by
Mayne, Rawlings, Rao and Scokaert [18] in 2000, which is also an excellent source
for more detailed information on the history of various NMPC variants not men-
tioned here. This framework also forms the core of our stability analysis of such
schemes in Chap. 5 of this book. A continuous time version of such a framework
was given by Fontes [9] in 2001.

All stability results discussed so far add terminal constraints as additional state
constraints to the finite horizon optimization in order to ensure stability. Among the
first who provided a rigorous stability result of an NMPC scheme without such con-
straints were Parisini and Zoppoli [19] and Alamir and Bornard [1], both in 1995 and
for discrete time systems. Parisini and Zoppoli [19], however, still needed a terminal
cost with specific properties similar to the one used in [5]. Alamir and Bonnard [1]
were able to prove stability without such a terminal cost by imposing a rank con-
dition on the linearization on the system. Under less restrictive conditions, stability
results were provided in 2005 by Grimm, Messina, Tuna and Teel [11] for discrete
time systems and by Jadbabaie and Hauser [12] for continuous time systems. The
results presented in Chap. 6 of this book are qualitatively similar to these refer-
ences but use slightly different assumptions and a different proof technique which
allows for quantitatively tighter results; for more details we refer to the discussions
in Sects. 6.1 and 6.9.

After the basic systems theoretic principles of NMPC had been clarified, more
advanced topics like robustness of stability and feasibility under perturbations, per-
formance estimates and efficiency of numerical algorithms were addressed. For a
discussion of these more recent issues including a number of references we refer to
the final sections of the respective chapters of this book.

1.3 How Is This Book Organized?

The book consists of two main parts, which cover systems theoretic aspects of
NMPC in Chaps. 2-8 on the one hand and numerical and algorithmic aspects in
Chaps. 9-10 on the other hand. These parts are, however, not strictly separated; in
particular, many of the theoretical and structural properties of NMPC developed in
the first part are used when looking at the performance of numerical algorithms.
The basic theme of the first part of the book is the systems theoretic analysis of
stability, performance, feasibility and robustness of NMPC schemes. This part starts
with the introduction of the class of systems and the presentation of background
material from Lyapunov stability theory in Chap. 2 and proceeds with a detailed
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description of different NMPC algorithms as well as related background information
on dynamic programming in Chap. 3.

A distinctive feature of this book is that both schemes with stabilizing terminal
constraints as well as schemes without such constraints are considered and treated in
a uniform way. This “uniform way” consists of interpreting both classes of schemes
as relaxed versions of infinite horizon optimal control. To this end, Chap. 4 first de-
velops the theory of infinite horizon optimal control and shows by means of dynamic
programming and Lyapunov function arguments that infinite horizon optimal feed-
back laws are actually asymptotically stabilizing feedback laws. The main building
block of our subsequent analysis is the development of a relaxed dynamic program-
ming framework in Sect. 4.3. Roughly speaking, Theorems 4.11 and 4.14 in this
section extract the main structural properties of the infinite horizon optimal control
problem, which ensure

asymptotic or practical asymptotic stability of the closed loop,

admissibility, i.e., maintaining the imposed state constraints,

a guaranteed bound on the infinite horizon performance of the closed loop,
applicability to NMPC schemes with and without stabilizing terminal constraints.

The application of these theorems does not necessarily require that the feedback
law to be analyzed is close to an infinite horizon optimal feedback law in some
quantitative sense. Rather, it requires that the two feedback laws share certain prop-
erties which are sufficient in order to conclude asymptotic or practical asymptotic
stability and admissibility for the closed loop. While our approach allows for inves-
tigating the infinite horizon performance of the closed loop for most schemes under
consideration—which we regard as an important feature of the approach in this
book—we would like to emphasize that near optimal infinite horizon performance
is not needed for ensuring stability and admissibility.

The results from Sect. 4.3 are then used in the subsequent Chaps. 5 and 6 in
order to analyze stability, admissibility and infinite horizon performance properties
for NMPC schemes with and without stabilizing terminal constraints, respectively.
Here, the results for NMPC schemes with stabilizing terminal constraints in Chap. 5
can by now be considered as classical and thus mainly summarize what can be
found in the literature, although some results—Ilike, e.g., Theorems 5.21 and 5.22—
generalize known results. In contrast to this, the results for NMPC schemes without
stabilizing terminal constraints in Chap. 6 were mainly developed by ourselves and
coauthors and have not been presented before in this way.

While most of the results in this book are formulated and proved in a mathemat-
ically rigorous way, Chap. 7 deviates from this practice and presents a couple of
variants and extensions of the basic NMPC schemes considered before in a more
survey like manner. Here, proofs are occasionally only sketched with appropriate
references to the literature.

In Chap. 8 we return to the more rigorous style and discuss feasibility and robust-
ness issues. In particular, in Sects. 8.1-8.3 we present feasibility results for NMPC
schemes without stabilizing terminal constraints and without imposing viability as-
sumptions on the state constraints which are, to the best of our knowledge, either



