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Preface

The study of differential equations is a wide field in pure
and applied mathematics, physics, meteorology, and engineering.
All of these disciplines are concerned with the properties of
differential equations of various types. Pure mathematics focuses
on the existence and uniqueness of solutions, while applied
mathematics emphasizes the rigorous justification of the methods
for approximating solutions. Differential equations play an
important role in modelling virtually every physical, technical, or
biological process, from celestial motion, to bridge design, to
interactions between neurons. Differential equations such as those
used to solve real-life problems may not necessarily be directly
solvable, i.e. do not have closed form solutions. Instead, solutions
can be approximated using numerical methods. Mathematicians
also study weak solutions (relying on weak derivatives), which
are types of solutions that do not have to be differentiable
everywhere. This extension is often necessary for solutions to
exist, and it also results in more physically reasonable properties
of solutions, such as possible presence of shocks for equations of
hyperbolic type. The study of the stability of solutions of differential
equations is known as stability theory.

Differential equations arise in many areas of science and
technology, specifically whenever a deterministic relation involving
some continuously varying quantities (modelled by functions)
and their rates of change in space and/or time (expressed as
derivatives) is known or postulated. This is illustrated in classical
mechanics, where the motion of a body is described by its position
and velocity as the time value varies. Newton’s laws allow one
(given the position, velocity, acceleration and various forces acting
on the body) to express these variables dynamically as a differential
equation for the unknown position of the body as a function of
time. In some cases, this differential equation (called an equation
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of motion) may be solved explicitly. An example of modelling a
real world problem using differential equations is the determination
of the velocity of a ball falling through the air, considering only
gravity and air resistance. The ball’s acceleration towards the ground
is the acceleration due to gravity minus the deceleration due to
air resistance. Gravity is considered constant, and air resistance
may be modelled as proportional to the ball’s velocity. This means
that the ball’s acceleration, which is a derivative of its velocity,
depends on the velocity. Finding the velocity as a function of time
involves solving a differential equation. Differential equations are
mathematically studied from several different perspectives, mostly
concerned with their solutions —the set of functions that satisfy
the equation. Only the simplest differential equations admit
solutions given by explicit formulas; however, some properties of
solutions of a given differential equation may be determined
without finding their exact form. If a self-contained formula for
the solution is not available, the solution may be numerically
approximated using computers. The theory of dynamical
systems puts emphasis on qualitative analysis of systems described
by differential equations, while many numerical methods have
been developed to determine solutions with a given degree of
accuracy.

The texts are arranged in a lucid form and written in colloquial
English. All the essential aspects of this subject have been included.
Hopefully, the present study will prove very useful for students
and teachers.

— Editor
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1

Introduction

Differential Equation

A differential equation is a mathematical equation for an
unknown function of one or several variables that relates the
values of the function itself and its derivatives of various orders.
Differential equations play a prominent role in engineering, physics,
economics, and other disciplines. Differential equations arise in
many areas of science and technology, specifically whenever a
deterministic relation involving some continuously varying
quantities (modelled by functions) and their rates of change in
space and/or time (expressed as derivatives) is known or postulated.
This is illustrated in classical mechanics, where the motion of a
body is described by its position and velocity as the time value
varies. Newton’s laws allow one (given the position, velocity, acceleration
and various forces acting on the body) to express these variables"
dynamically as a differential equation for the unknown position
of the body as a function of time. In some cases, this differential
equation (called an equation of motion) may be solved explicitly.

An example of modelling a real world problem using
differential equations is the determination of the velocity of a ball
falling through the air, considering only gravity and air resistance.
The ball’s acceleration towards the ground is the acceleration due
to gravity minus the deceleration due to air resistance. Gravity is
considered constant, and air resistance may be modelled as
proportional to the ball’s velocity. This means that the ball’s
acceleration, which is a derivative of its velocity, depends on the
velocity. Finding the velocity as a function of time involves solving
a differential equation.
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Differential equations are mathematically studied from several
different perspectives, mostly concerned with their solutions —
the set of functions that satisfy the equation. Only the simplest
differential equations admit solutions given by explicit formulas;
however, some properties of solutions of a given differential
equation may be determined without finding their exact form. If
a self-contained formula for the solution is not available, the
solution may be numerically approximated using computers. The
theory of dynamical systems puts emphasis on qualitative analysis
of systems described by differential equations, while many
numerical methods have been developed to determine solutions
with a given degree of accuracy.

Directions of Study

The study of differential equations is a wide field in pure and
applied mathematics, physics, meteorology, and engineering. All
of these disciplines are concerned with the properties of differential
equations of various types. Pure mathematics focuses on the
existence and uniqueness of solutions, while applied mathematics
emphasizes the rigorous justification of the methods for
approximating solutions. Differential equations play an important
role in modelling virtually every physical, technical, or biological
process, from celestial motion, to bridge design, to interactions
between neurons. Differential equations such as those used to
solve real-life problems may not necessarily be directly solvable,
i.e. do not have closed form solutions. Instead, solutions can be
approximated using numerical methods.

Mathematicians also study weak solutions (relying on weak
derivatives), which are types of solutions that do not have to be
differentiable everywhere. This extension is often necessary for
solutions to exist, and it also results in more physically reasonable
properties of solutions, such as possible presence of shocks for
equations of hyperbolic type.

The study of the stability of solutions of differential equations
is known as stability theory:.
Nomenclature

The theory of differential equations is well developed and the
methods used to study them vary significantly with the type of
the equation.
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Ordinary and Partial

* An ordinary differential equation (ODE) is a differential
equation in which the unknown function (also known as
the dependent variable) is a function of a single independent
variable. In the simplest form, the unknown function is
a real or complex valued function, but more generally, it
may be vector-valued or matrix-valued: this corresponds
to considering a system of ordinary differential equations
for a single function.

Ordinary differential equations are further classified according
to the order of the highest derivative of the dependent variable
with respect to the independent variable appearing in the equation.
The most important cases for applications are first-order and
second-order differential equations. For example, Bessel’s differential
equation

2
x227}21+x2—z+(x2—a2)y=0

(in which y is the dependent variable) is a second-order
differential equation. In the classical literature also distinction is
made between differential equations explicitly solved with respect
to the highest derivative and differential equations in an implicit form.

A partial differential equation (PDE) is a differential equation
in which the unknown function is a function of multiple independent
variables and the equation involves its partial derivatives. The
order is defined similarly to the case of ordinary differential
equations, but further classification into elliptic, hyperbolic, and
parabolic equations, especially for second-order linear equations,
is of utmost importance. Some partial differential equations do
not fall into any of these categories over the whole domain of the
independent variables and they are said to be of mixed type.

Linear and Non-linear

Both ordinary and partial differential equations are broadly
classified as linear and nonlinear.

* A differential equation is linear if the unknown function
and its derivatives appear to the power 1 (products are
not allowed) and nonlinear otherwise. The characteristic
property of linear equations is that their solutions form
an affine subspace of an appropriate function space, which
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results in much more developed theory of linear
differential equations. Homogeneous linear differential
equations are a further subclass for which the space of
solutions is a linear subspace i.e. the sum of any set of
solutions or multiples of solutions is also a solution. The
coefficients of the unknown function and its derivatives
in a linear differential equation are allowed to be (known)
functions of the independent variable or variables; if these
coefficients are constants then one speaks of a constant
coefficient linear differential equation.

e There are very few methods of solving nonlinear
differential equations exactly; those that are known
typically depend on the equation having particular
symmetries. Nonlinear differential equations can exhibit
very complicated behaviour over extended time intervals,
characteristic of chaos. Even the fundamental questions of
existence, uniqueness, and extendability of solutions for
nonlinear differential equations, and well-posedness of
initial and boundary value problems for nonlinear PDEs
are hard problems and their resolution in special cases is
considered to be a significant advance in the mathematical
theory (cf. Navier-Stokes existence and smoothness).

Linear differential equations frequently appear as approximations
to nonlinear equations. These approximations are only valid under
restricted conditions. For example, the harmonic oscillator equation
is an approximation to the nonlinear pendulum equation that is
valid for small amplitude oscillations.

Examples: In the first group of examples, let # be an unknown
function of x, and ¢ and @ are known constants.

* Inhomogeneous first-order linear constant coefficient

du ,
ordinary differential equation: T cu+x-.

e Homogeneous second-order linear ordinary differential

ti -dzu—xﬂJru—O
equation: o i :

e Homogeneous second-order linear constant coefficient

ordinary differential equation describing the harmonic
2

. u 2
oscillator: — +@'u=0.
dx
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Inhomogeneous first-order nonlinear ordinary differential
. du _
equation: e u +1.

Second-order nonlinear ordinary differential equation

describing the motion of a pendulum of length L:
2

U
L—+¢sinu =0.
dx’® 8

In the next group of examples, the unknown function u depends
on two variables x and ¢ or x and y.

Homogeneous first-order linear partial differential

i -%Ha—u—o
equation: By I .

Homogeneous second-order linear constant coefficient
partial differential equation of elliptic type, the Laplace

’u  du
equation: ﬁ+ay—2 =0.
Third-order nonlinear partial differential equation, the
Korteweg—de Vries equation: a_u = uébi— 83ul
ot ax 9x’

Related Concepts

A delay differential equation (DDE) is an equation for a
function of a single variable, usually called time, in which
the derivative of the function at a certain time is given in
terms of the values of the function at earlier times.

A stochastic differential equation (SDE) is an equation in
which the unknown quantity is a stochastic process and
the equation involves some known stochastic processes,
for example, the Wiener process in the case of diffusion
equations.

A differential algebraic equation (DAE) is a differential
equation comprising differential and algebraic terms, given
in implicit form.

Connection to difference equations

The theory of differential equations is closely related to the
theory of difference equations, in which the coordinates assume
only discrete values, and the relationship involves values of the
unknown function or functions and values at nearby coordinates.
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Many methods to compute numerical solutions of differential
equations or study the properties of differential equations involve
approximation of the solution of a differential equation by the
solution of a corresponding difference equation.

Universality of Mathematical Description

Many fundamental laws of physics and chemistry can be
formulated as differential equations. In biology and economics,
differential equations are used to model the behaviour of complex
systems. The mathematical theory of differential equations first
developed together with the sciences where the equations had
originated and where the results found application.

However, diverse problems, sometimes originating in quite
distinct scientific fields, may give rise to identical differential
equations. Whenever this happens, mathematical theory behind
the equations can be viewed as a unifying principle behind diverse
phenomena.

As an example, consider propagation of light and sound in
the atmosphere, and of waves on the surface of a pond. All of them
may be described by the same second-order partial differential
equation, the wave equation, which allows us to think of light and
sound as forms of waves, much like familiar waves in the water.
Conduction of heat, the theory of which was developed by Joseph
Fourier, is governed by another second-order partial differential
equation, the heat equation. It turned out that many diffusion
processes, while seemingly different, are described by the same
equation; Black-Scholes equation in finance is for instance, related
to the heat equation.

Operations

Differential Operator

In mathematics, a differential operator is an operator defined
as a function of the differentiation operator. It is helpful, as a
matter of notation first, to consider differentiation as an abstract
operation, accepting a function and returning another (in the style
of a higher-order function in computer science).

This article considers mainly linear operators, which are the
most common type. However, non-linear differential operators,
such as the Schwarzian derivative also exist.



Introduction 7

Notations

The most common differential operator is the action of taking
the derivative itself. Common notations for taking the first
derivative with respect to a variable x include:

d
—,D,D_,andd...
dx ' ’ .
When taking higher, nth order derivatives, the operator may
also be written:
d”
—,D",orD".
dxli -
The derivative of a function f of an argument x is sometimes
given as either of the following:

[FCO] f(x)
The D notation’s use and creation is credited to Oliver
Heaviside, who considered differential operators of the form

chDk

k=0
in his study of differential equations.

One of the most frequently seen differential operators is the
Laplacian operator, defined by

1l az

A=Vi=) —.

Az:;axf.

Another differential operator is the E operator, or theta

operator, defined by
d

O=z—,
dz

This is sometimes also called the homogeneity operator,
because its eigenfunctions are the monomials in z:

o(z")=kz", k=0,1,2,...

In n variables the homogeneity operator is given by

1} a
0=) x, —.
; ! ox,
As in one variable, the eigenspaces of @ are the spaces of
homogeneous polynomials.
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The result of applying the differential to the left and to the
right, and the difference obtained when applying the differential
operator to the left and to the right, are denoted by arrows as
follows:

fé.\‘g =gd f
fé'\_g =fd g
fé_\,g =fd g—gd f

Such a bidirectional-arrow notation is frequently used for
describing the probability current of quantum mechanics.

Del

The differential operator del is an important vector differential
operator. It appears frequently in physics in places like the
differential form of Maxwell’s Equations. In three dimensional
Cartesian coordinates, del is defined:

w0 A0  x8
V=Xx—4+y—+2z2—
ox " dy oz

Del is used to calculate the gradient, curl, divergence, and
laplacian of various objects.

Adjoint of an Operator

Given a linear differential operator T

Tu=) a,(x)Du
k=0

the adjoint of this operator is defined as the operator 7* such
that

(Tu,v) = (u, T v)

where the notation (:,-) is used for the scalar product or inner
product. This definition therefore depends on the definition of the
scalar product.

Formal Adjoint in One Variable

In the functional space of square integrable functions, the
scalar product is defined by

£, = [ fogx.



