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Preface to the Second Edition

Since the book was first published in 1991, the field of surface nonlinear optics
has grown substantially to the point where an exposition of the principles of this
field will prove useful to many. Thus, in this second edition, Chapter 8 addresses
this area. Also, optical probes of magnetism of very thin films and multilayers
are now widely used, and magneto-optic devices of increasing sophistication have
appeared. Chapter 9 is thus devoted to magneto-optics, and associated nonlinear
phenomena. The earlier chapter on “Chaos” appears as Chapter 10. The philosophy
which underlies the first edition was also employed in the writing of the two new
chapters.

Irvine, CA D. L. Mills
March 1998



Preface to the First Edition

One intriguing aspect of physics is its dynamic and rapidly evolving nature; exciting
new fields can become moribund within relatively few years, only to revive and
grow again in a dramatic and explosive manner in response to new developments.
This has been the case for the fields of optics and atomic physics. In the 1950s,
and perhaps into the early 1960s, both fields appeared mature, fully developed, and
perhaps even a bit dull as a consequence. The appearance of the laser has turned
both of these fields into dynamic areas of research, within which fundamental
and profound questions are being explored. The research of the past two or three
decades has led also to very important applications and to new devices. The dye
laser, which enables a very narrow line to be tuned over an appreciable spectral
range, has led to a virtual revolution in the spectroscopy of atoms, molecules, and
the condensed phases of matter.

A parallel development, readily detectable in the recent literature of theoretical
physics, has been the substantial advance in our understanding of highly nonlinear
phenomena. Numerous texts are devoted to exposition of the theoretical methods
which may be used to extract useful information from the important equations
encountered in the various fields of physics.

A survey of the contemporary literature of nonlinear optics shows that in this
area one encounters a large fraction of the basic equations and principles of nonlin-
ear physics. For example, analysis of self-induced transparency leads to the sine-
Gordon equation, and that of soliton propagation in optical fibers to the nonlinear
Schrédinger equation. Other examples can be found as well. As a consequence,
one has in hand real data which illustrate basic properties of those solutions of
these important equations with no counterpart in linear response theory or in per-
turbation theoretic analyses of nonlinear terms. Other concepts central to nonlinear
optics, such as the role of phase matching in various wave mixing experiments,
are of very considerable importance in other subfields of physics. The field of non-
linear optics is thus a superb laboratory within which the student may encounter
and explore key notions of nonlinear physics of general importance, while at the
same time learning the foundations of a most important and fundamental area of
contemporary physics.

Furthermore, the above issues are not addressed in many introductory graduate
courses in electromagnetic theory; the emphasis is usually placed on more classical
topics developed in an earlier era. This volume has its origin in a course given



VIII Preface to the First Edition

at Irvine by the author, directed toward the student who has completed the first
year electromagnetic theory sequence. It is intended as an extension of interest not
only to students who wish to pursue thesis research in optics or laser spectroscopy
but also to the general student whose ultimate research specialty may lie within a
very different subfield. The focus is then on general principles, with many technical
points that are important to the specialist played down or set aside. It is the author’s
experience that existing texts on nonlinear optics use specialized terms that are not
defined fully and present introductions to important basic issues that are perhaps
too concise to be grasped easily by the general reader. The purpose of this volume
is to bridge the gap between the classic texts on electromagnetic theory, which omit
systematic exploration of modern optics, and the (often excellent!) specialized texts
full of discussion essential to those who are pursuing research in the area, but which
are too detailed and too terse for the general student of physics.

The specialist may thus find important topics omitted from this volume, or
discussions of a number of technical points a bit incomplete. The intention here is
to provide an overview; the literature on nonlinear optics is sufficiently complete
and accessible that those who wish to pursue particular aspects in more detail can
proceed further without difficulty.

It is important also for the reader to acquire an understanding of the optical
properties of various solid materials, to appreciate the reasons for the choice of
samples for a given experiment, and the constraints that limit one’s ability to
explore various phenomena. Also, one must acquire a certain vocabulary in this
arena to understand the literature. Chapter 2, which is quite lengthy, presents an
overview of the optical properties of materials, since it is the experience of the
author that many students have a very limited grasp of this area, though they may
know the mathematical details associated with various models of matter.

It is hoped that this volume will broaden the horizons of graduate students
in the physical sciences, by introducing them to the fascinating field of nonlinear
optics, and at the same time provide them with an introduction to general aspects
of the physics of nonlinear systems.

Irvine, CA D.L. Mills
March 1991
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1. Introductory Remarks

Throughout most of this volume, we shall be describing the interaction of elec-
tromagnetic radiation with matter within a macroscopic framework; we shall
always be concerned with electric fields whose spatial variation involves length
scales very large compared to the size of the atoms and molecules that are the
basic constituents of the material of interest. In this regard, we note that in the
visible portion of the spectrum, the wavelength of light is roughly 5 x 107°
cm, while a typical molecular bond length or crystal lattice constant is 3 X
107* cm. We may then proceed by studying the solutions of Maxwell’s equa-
tions, which have the form

V-D=0, V-B=0, (1.1a)
1 0B 10D

VXE=—-——, VXH=-—. (1.1b)
c ot c ot

We assume no external charge is present, and no external current is present as
well, so we set p = J = 0.

To proceed, we require relations between the various fields which enter
Maxwell’s equations. In the limit of interest, we have [1.1]

D =E + 47P (1.2a)
and
B=H+ 47M , (1.2b)

where P and M are the electric dipole moment per unit volume, and magnetic
moment per unit volume, respectively. Until we reach Chap. 9, we shall confine
our attention entirely to nonmagnetic media, and set M = 0. Nonlinearities very
similar to those explored through Chap. 8 have their origin in the magnetic degrees
of freedom of appropriate materials. Their study constitutes the very important field
of magnetooptics.

We then have

V-E+47V-P=0 (1.3a)
and with B = H, the two remaining Maxwell equations are easily combined
to give

1 ’E  4md’P

VE-V(V-E)-5—-—5—5 =0. 1.3b
VB =G5 " aar (1.30)
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To proceed, we require information on the relationship between P and E.
In principle, one requires a full microscopic theory of the response of a par-
ticular material to relate E, the macroscopic electric field [1.1], to the dipole
moment per unit volume.

It would appear that by our neglect of the term involving the current density
J on the right-hand side of the V X H Maxwell equation, our attention will be
confined exclusively to insulating materials, rather than conductors such as
metals or doped semiconductors. We shall see shortly that this is not the case;
the conduction currents stimulated by time varying electric fields can in fact
be viewed as contributing to the dipole moment per unit volume, as we shall
come to appreciate. It is the case, however, that many of the nonlinear optical
phenomena to be explored here require that the various beams involved have
a long path length in the medium of interest. Thus, our attention will be di-
rected largely toward applications to insulating materials that are nominally
transparent at the relevant wavelengths. The reader should keep in mind that
one encounters very interesting nonlinear optical phenomena in metals and in
doped semiconductors, as discussed in the text by Shen [1.2].

One may proceed by noting the following: The largest electric fields en-
countered in practice fall into the range of 10° V/cm; most forms of matter
exhibit electrical breakdown for fields in excess of this value. An electron bound
to an atom or molecule, or moving through a solid or dense liquid, experiences
electric fields in the range of 10° V/cm. This follows by noting that, over
distances the order of an angstrom, the change in electrostatic potential can be
several electron volts. The laboratory fields of interest are then small compared
to the electric fields experienced by the electrons in the atoms and molecules
from which dense matter is constructed. In this circumstance, we can expand
the dipole moment per unit volume in a Taylor series in powers of the mac-
roscopic field E. For the moment, we suppose the dipole moment per unit
volume P(r, t), depends on the electric field E at the same point r, and at the
same time. We shall see shortly that in real materials, this assumption is overly
restrictive. There are important qualitative implications of a more realistic re-
lation between P and E. But this simple assertion will allow us to begin the
discussion. Then the ath Cartesian component of the dipole moment per unit
volume, P,(r, t), is a function of the three Cartesian components of the electric
field, Eg(r, t). Here a and B range over x, y, and z. The Taylor series then
takes the form

oP,
Pr,H)=PY+ > ( ) = < ) E4E,
~ \0E,/ ! IE4IE,)
2 ( i ) EgE,Es + (1.4)
2 BBy e .
!4 \OEOE,0Es/ o =

In most of the common materials we encounter, the first term, which is the
electric dipole moment per unit volume in zero electric field, vanishes iden-
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tically. The usual situation is a dielectric material, within which the dipole
moment in zero field vanishes; any dipole moment present is then induced by
the external field.

There is an important class of materials, known as ferroelectrics, which pos-
sess a spontaneous electric dipole moment in zero field [1.3]. These are electrical
analogues of the better known ferromagnets, which possess a spontaneous magne-
tization per unit volume M. In a ferromagnet, as the material is heated, the sponta-
neous magnetization M decreases in magnitude, to vanish at a certain temperature
T., known as the Curie temperature. Ferroelectrics behave in a similar manner; the
polarization P will decrease with increasing temperature, again to vanish above a
critical temperature.

In the common ferroelectrics, the origin of the spontaneous dipole moment
is in the shift of an ion from a high symmetry site to a low symmetry site as
the temperature is lowered. For example, in the ferroelectric material BaTiO;,
in the high temperature phase for which P’ = 0, the Ti*" ion sits at the center
of an oxygen octahedron. As the temperature is lowered below the critical tem-
perature, the Ti®* shifts off this high symmetry site, so the Ti-O complex
acquires a net electric dipole moment. This is a collective phenomenon; all the
Ti*" ions shift in a coherent manner, so the crystal as a whole acquires an
electric dipole moment. Similarly, in KH,PO,, it is the H that shifts.

Such materials are influenced strongly by dc or low frequency electric fields,
particularly near their transition temperature, because the unstable ionic species
respond strongly to an applied electric field. Ferroelectrics are thus useful in
a variety of electro-optic devices.

In a ferroelectric, the dipole moment per unit volume, P, in the absence
of an electric field, is independent of time, but may vary with position in the
sample. In general, the presence of a nonzero polarization leads to the presence
of a static, macroscopic electric field, E“(r). This static field obeys the two
equations

VX E®=0 (1.5a)
and

V-E® = —47V.-p9 (1.5b)

Such fields may be analyzed by the methods of electrostatics [1.4]. We may
write, from (1.5 a), E” = —V¢'?, and (1.5 b) becomes Poisson’s equation
with effective charge density p, = =V - P.

Our interest will be in the study of various time-dependent phenomena, in
response to externally applied electric fields, usually with their origin in in-
cident laser radiation. Thus the first term in (1.4) and the static fields it may
generate in a ferroelectric are of little interest. The second and subsequent terms
describe the influence of a time-dependent, macroscopic electric field; in what
follows, we consider only these contributions to the dipole moment per unit
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volume and their consequences, assuming the effect of P and the static elec-
tric fields it generates are accounted for as described above, if necessary.

We may then treat the response of dielectric and ferroelectric materials within
the same framework. For each, we will henceforth write

Pr, D) = D XBEsr, 1) + O X%, Eg(r, DE,(r, 1)
B By

+ > XD Ep(r, DE, (r, DE5(r, ) + -+, (1.6)
Brd

where x,, X435 are referred to as the second and third order susceptibilities,
respectively, and Xf,'g is the susceptibility tensor of ordinary dieletric theory.

As the notation in (1.6) indicates, the various susceptibilities are tensor
objects. Thus, x43 is a second rank tensor. For an isotropic material, such as
a gas or liquid, x4 is diagonal: x'} = x"8,s. It is also established easily that
for a cubic crystal, x4j is diagonal. Since both P and E are vectors, and thus
are odd under inversion symmetry, x\;3, must vanish in any material that is left
invariant in form under inversion. This is the case for liquids, gases, and for
a number of common crystals such as the alkali halides, and also for the semi-
conductors Si and Ge. Notice that the fourth rank tensor x53,s has the same
transformation properties as the elastic constants of elasticity theory. One may
consult analyses of elastic constants, in any given case, to investigate which
elements of this tensor are nonvanishing [1.5]. Shen [1.2] has given very useful
compilations of the nonzero elements of Xff,;, and Xﬁfgy& for crystals of various
symmetry.

We separate P, in (1.6) into two pieces, one linear in the electric field, and
one nonlinear:

Pr,t) = PO(r,t) + P (r, 1), (1.72)
where
PO(r, 1) = > XBExr, 1) (1.7b)
B
and

POV (r, 1) = D X3, Exr, DE,(r, 1)

By
+ D XD Epr, DE,(r, DE(r, 1) -+ - . (1.7¢)

Byé

If one retains only P(r, ) in the analysis, and combines this with the
Maxwell equations (1.3) then one obtains a description of electromagnetic wave
propagation in media, possibly crystalline in nature, and thus described by an
electric susceptibility tensor x,g. The combination €,5 = 8,5 + 4mx,p is the
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dielectric tensor of the material. Here 8,4 is the Kronecker delta function, equal
to unity when the two subscripts are the same, and zero otherwise. We shall
assume that the reader is familiar with electromagnetic theory at this level,
which is covered thoroughly in numerous excellent texts [1.1,6].' However,
we will cover below those aspects of the topic essential for the present dis-
cussion.

The calculation of the various nonlinear susceptibility tensor elements re-
quires a proper microscopic theory of the material in question. One can write
down formal expressions for these quantities,” but the resulting expressions are
formidable in appearance. At the time of writing, evaluations of these formulae
for anything more than schematic models of materials remain at an early stage.
The simple models, however, prove most useful as a means of outlining the
basic physical properties which control these parameters. We shall be content
simply ‘to regard the various coefficients in (1.7) as phenomenological param-
eters.

We conclude with one final remark. Throughout the present discussion, the
electric field E(r, f) is the macroscopic electric field, defined as in Jackson’s
text [1.1]. Quite often in the literature, one encounters descriptions of the linear
or nonlinear response of a material based on a picture which models the atomic
or molecular structure explicitly. One then relates the dipole moment per unit
volume, our P(r, t), to that p, of an atomic or molecular constituent; p, may
be written as a series similar to (1.6), where now in place of Xf,',;, ,\/ffgy, etc.,
one has the various linear and nonlinear polarizabilities of the individual con-
stituents.

In this case, the electric field which enters the expansion is not the mac-
roscopic electric field here, but the local field which acts on the individual
entity; this is the external field, supplemented by that produced by the induced
dipole moments which surround the entity in question. Clearly, the local field
may differ substantially in value from the macroscopic field. However, it is
the case that the local field is always proportional to the macroscopic field; a
consequence is that the dipole moment per unit volume may always be ex-
pressed as an expansion in powers of the macroscopic field, as we do here.
Particular models such as those just described can be very useful, but they can
be applied only to materials in which the various atomic and molecular con-
stituents are well separated and well defined (gases, some liquids, rare gas
crystals, molecular crystals, alkali halide crystals, . . .). In dense materials,
with extended chemical bonds such as those found in semiconductors, it is not
clear how to isolate a basic entity, and how to calculate the local field within
a simple model that is also meaningful. We thus prefer to phrase our discussion

! An excellent account of the electrodynamics of crystals, within which the tensor character of the
dielectric response is accounted for, is found in [1.6].

2 A rather general microscopic description of the nonlinear optical response of materials has been given
by Armstrong et al. [1.7].
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entirely within the phenomenological framework where all nonlinear polariz-
abilities are related to the macroscopic field.

We now turn to a more detailed discussion of the linear response charac-
teristics of materials, and their nonlinear response, before we enter descriptions
of nonlinear optical processes.

Problems

1.1 A sphere of radius R is fabricated from ferroelectric material, and has a
spatially uniform polarization P = ZP, parallel to the z direction everywhere.

(a) Find D and E inside and outside the material.

(b) A positive ion is attracted to, and sticks to one pole of the sphere. Calculate
the work required to remove the ion and carry it off to infinity, if it is
singly charged and P, = 1.5 X 10* cgs units.

1.2 A point charge Q is placed at the origin of an isotropic nonlinear dielec-
tric. Thus, both D and E are in the radial direction, by symmetry. One has,
with D, and E, the radial fields, D, = E, + 4mx"E, + 4wx*E>. Assume
> 0, and discuss the behavior of E, and D,, with attention to the limits r —
o, r— 0.

1.3 In an anisotropic dielectric exposed to static fields, x&s is symmetric and
thus we can always find a set of principal axes xqy,z, within which this tensor
is diagonal. Such a material is placed between two parallel metal plates of
infinite extent, separated by the distance D. The space between the plates is
filled with the dielectric. The z axis is normal to the plates, which are parallel
to the xy plane. The z, axis makes an angle 6 with respect to the z axis, while
y and y, coincide. Find D and E everywhere, if V is the voltage difference
between the metal plates.



