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Preface

In the past few years (1995-98), I have given several advanced graduate
courses at UCLA in order to provide a comprehensive account of the
proof by Wiles (and Taylor) of the identification of certain Hecke algebras
with universal deformation rings of Galois representations. Assuming a
good knowledge of Class field theory, I started with an overview of
the theory of automorphic forms on linear algebraic groups, specifically,
GL(n) over number fields. Since second year graduate students often lack
knowledge of representation theory of profinite groups, necessary to carry
out the task, I went on to describe basic representation theory, the theory
of pseudo-representations and their deformation. To reach this point, I
had already covered almost a one-year course. Then I continued to give a
sketch of the rationality and the control theorems of the space of elliptic
modular forms, which is the basis of the definition of the Hecke algebra.
In the meantime, K. Fujiwara and F. Diamond independently gave, in
1996, a substantial simplification of the proof of Wiles, which I incor-
porated in my course. After having proved the theorem, assuming many
things, I came back to the material I used in the proof, in particular the
duality theorems (due to Poitou and Tate) of Galois cohomology groups.
Thus the first chapters follow faithfully my series of courses; so, logically
the reader might have to jump around between chapters. However, ex-
cept for the construction of modular Galois representations, which has
been described in some literature already, basically all ingredients of the
proof of Wiles are at least covered to some extent. The final chapter
(Chapter V) is added after finishing the series of courses, in order to
give some indication of further study, and this part contains some new
results of mine. An outline of the book can be found in Subsection 2.1 in
Chapter 1.

ix



X Preface

Although I have not covered the proof by Wiles of the Shimura—
Taniyama conjecture and Fermat’s last theorem, I hope that graduate
students can, after finishing this book, thoroughly understand Wiles’
original paper treating these two profound results. I hope to return to
the theory of elliptic curves and modular Galois representations in a
book in the near future.

While I was preparing this book, I received help from many people
(including my present and former students) who read the manuscript
and provided useful advice and corrections on mathematical, linguistic
and historical matters. I wish to thank all of them. I would also like to
acknowledge partial support from the national science foundation while
I was preparing this book.

May 25th, 1999 at Los Angeles,
Haruzo Hida
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1

Overview of Modular Forms

It is difficult to provide a brief summary of techniques used in modern
number theory. Traditionally, mathematical research has been classified
by the method mathematicians exploit to study their research areas,
except possibly for number theory. For example, algebraists study math-
ematical questions related to abstract algebraic systems in a purely alge-
braic way (only allowing axioms defining their algebraic systems), differ-
ential geometers study manifolds via infinitesimal analysis, and algebraic
geometers study geometry of algebraic varieties (and its siblings) via com-
mutative algebras and category theory. There are no central techniques
which distinguish number theory from other subjects, or rather, number
theorists exploit any techniques available to hand to solve problems spe-
cific to number theory. In this sense, number theory is a discipline in
mathematics which cannot be classified by methodology from the above
traditional viewpoint but is just a web of rather specific problems (or
conjectures) tightly and subtly knit to each other. We just study numbers,
those simple ones, like integers, rational numbers, algebraic numbers, real
and complex numbers and p-adic numbers, and that is it.

What has emerged from our rather long history is that we continue
to study at least two aspects of these numbers: the numbers of the
base field and the numbers of its extensions. For example, the quadratic
reciprocity law describes in a simple way how rational primes decompose
as a product of prime ideals in a quadratic extension only using data
from rational integers. More generally, by class field theory, we know
how rational primes decompose in an abelian extension out of the datum
from rational numbers. Thus we have two sets of numbers, the first
is the numbers of the base field and the other from an extension of
the base field. Nowadays, class field theory is often described using
transcendental numbers from all possible completions of the base fields,

1



2 Overview of Modular Forms

involving complex, real and p-adic numbers. The adele ring A is just a
subring of (]'[p Qp) x R generated by p-adic integers (for all primes p),
real numbers and rational numbers (even additively):

A=(ZxR)+Q)c (HQP) x R (2=HZP),
P

where we regard Q < A by the diagonal embedding & — (&,€,... ,¢,...) €
]’IP Qp xR. Thus for a given number field F (that is, a finite extension of the
rational numbers Q), the adele ring F, = F ®g A of F represents all data
from the base field. For a given algebraic group G defined over F, which
we may think of as just a coherent rule assigning a group G(4) to any
F-algebra A, G(F,) is an immediate source of information. For example,
A — GL,(A), the group of invertible n x n matrices with coefficients in
A, is an algebraic group. Global class field theory is typically described
as a canonical exact sequence:

1 = GLi(F)C — GL(Fa) — Gal(F*®/F) — 1

for the identity connected component C of GL{(Fa), where ‘X’ indicates
the topological closure of X, and F®/F is the composite of all Galois
extensions M/F (inside an algebraic closure F of F) with Gal(M/F)
abelian (such an extension is called an abelian extension of F). Thus
we have the second set of numbers F°: those numbers in a Galois
extension specific to our choice of the algebraic group G = GL,. In this
first example, G = GL;, which is the simplest (and most important) of
all abelian algebraic groups. Thus we might call the study of extensions
of a base field the Galois side of number theory.

The above example tells us that it is important to study the geometry
of the homogeneous space G(F)\G(Fa). Most geometers, if they are given
a topological space, start studying functions on the space, because they
know by experience that functions are easier to manipulate and eventually
determine the space. We call functions on G(F)\G(Fa) modular forms. The
homogeneous space G(F)\G(Fa) often classifies geometric objects, like
abelian varieties and motives (as is often the case for a quotient of a big
group by a discrete subgroup, because the big group is somehow a (local)
transformation group of a collection of geometric objects, and elements
of the discrete subgroup give rise to (global) isomorphisms between the
objects). For example, when G = GL,, X = G(Q)\G(A)/ G(Z)Z (R)SO,(R)
for the maximal connected compact subgroup SO,(R) = GL,(R) and the
center Z(R) = G(R) classifies isomorphism classes of elliptic curves over
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C, and therefore, gives rise to the set of complex points of the (coarse)
moduli scheme P!(j) (defined over Q) classifying elliptic curves over
Q. Because of the classification property of X, we have a canonical
algebraic variety P!(j) defined over Q (and actually defined over Z)
which gives rise to X. The scheme P!(j) is called a canonical model of
X. This phenomenon that the homogeneous space G(F)\G(F,) classifies
some algebro-geometric objects is prevalent in many other cases of
different algebraic groups (like symplectic groups G = Sp(2g) and unitary
groups U(m,n)), and the resulting canonical models are called Shimura
varieties of P EL-type. In any case, a general homogeneous space X (U) =
GL(Q)\GL3(A)/U - Z(R)SO2(R) for an open subgroup U < GLz(z)
classifies elliptic curves with some additional structure (such as a given
point of order N) over Z (see [AME] and [GMF]). Then the canonical
model X(U) is called a modular curve, because it is a finite covering
of P!(j) and hence is an algebraic curve. Thus finding an elliptic curve
(with a given additional structure) defined over Q (or Z) is equivalent
to finding a rational (or integral) solution to the defining equations of
a specific modular curve X(U). In this way, our effort in understanding
the homogeneous space X(U) provides us with another number theoretic
question: a Diophantine problem of the equations of modular curves. This
is a typical example in Number theory of where a serious study of one
good problem yields another interesting question, making the life of the
theory virtually inexhaustible.

An elliptic curve E defined over a number field Q is a natural source
of a Galois representation pg, : Gal(Q/Q) — GL3(Z,) ramifying at p
and a finite set S of primes (independent of p). This comes from the
fact that the group E[p"] of p’-torsion points of an elliptic curve Eq is
isomorphic to (Z/p"Z)? and that the Galois action on E[p’] therefore gives
rise to a Galois representation pr mod p” : Gal(F/F) — GLy(Z/p'Z) =
Aut(E[p"]). This Galois representation has a remarkable property, found
by Hasse, that L,(X) = det(1 — pg,(Frob,)X) = 1 — a(¢)X + ¢X? has
rational integral coefficients a(¢) independent of p for primes £ ¢ S U {p}
(see, for example, [AME] or [GMF]). Here Frob, is the Frobenius element
in the Galois group. Then it is traditional to make an Euler product:

L(s,E) = [T Ly~
P

This Hasse—Weil L-function is absolutely convergent if Re(s) > %, and
Hasse and Weil conjectured that it should have an analytic continuation
to the whole s-plane with a functional equation relating L(s, E) to L(2 —
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s,E). This is a hard question, because L(s,E) is defined in a purely
algebraic way, while the conjecture predicts a purely analytic property
(typical for Number theoretic questions, as number theory belongs neither
to algebra nor to analysis).

Since a modular form f is a function on a topological group GL,(A),
it is natural to make a convolution product with a compactly supported
function ¢ on GLy(A). This operator f — ¢*f is called a Hecke operator.
Sometime in the 1930’s, Hecke discovered that the space of holomorphic
modular forms on X(U) has a base made of common eigenforms of
standard Hecke operators T'(n) indexed by positive integers n (see Sec-
tion 1.2 for a description of T(n)). Pick a common eigenform f, and
write the eigenvalues for T'(n) as A(T(n)). Hecke made an L-function:
L(s,A) = Z:‘;l A(T(n))n~*. This is a (modular) Hecke L-function, which
satisfies a functional equation relating L(s,A) to L(k — s,4) for a pos-
itive integer k called the weight of f. A remarkable fact is that the
eigenvalues are algebraic integers in a number field Q(A) (as implied
by Theorem 3.13 in Chapter 3) independent of n. It is not very of-
ten but not rare either that A(T'(n)) € Z for all n when the weight
k is 2 (although Q-rational eigenforms become sporadic as k grows);
thus, Q(1) = Q in such cases. Another remarkable fact is that this
L-function has an Euler product: L(s, f) = [], H,(p~*)~! with an Euler
factor Hy(X) = 1—a(p)X +w(p)p*~' X? for the weight k > 1 and a Dirich-
let character y, which is called the ‘Neben’ character of f by Hecke. Thus
when k = 2 and p = 1, the case Hecke called ‘Haupt typus’ (principal
type), the L-function looks like a Hasse-Weil L-function. Since Hecke
initiated the study of the modular side (in the non-abelian case), it would
be appropriate to call the study of modular forms (or the numbers of
the base field) the Hecke side of Number theory.

The Shimura—Taniyama conjecture states that the Hasse—Weil L-func-
tion of every elliptic curve rational over Q appears as a Hecke L-
function of a rational Hecke eigen cusp form, or equivalently, (and more
geometrically) that every Q-rational elliptic curve appears as a factor of
the jacobian of a modular curve (see [Lg] and [Sh3] for the history of
the conjecture, and see also [Sh4] for an account of Shimura’s work in
the 50’s and 60’s). As was shown by Shimura ([IAT] Chapter 7), to each
Hecke eigen cusp form of weight 2 defined on a modular curve X(U),
one can attach a canonical subabelian variety A (or a quotient) of the
jacobian of X(U) so that the L-function of A coincides with the Hecke
L-function of the cusp form. This fact implies that a Hecke eigen cusp
form with eigenvalue A(T'(¢)) and with ‘Neben’ character y has a unique



