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Preface

Many physical phenomena can be modelled by stochastic dynamical systems whose
evalution in time is governed by random forces as well as intrinsic dependence™
of the state on a finite part of its past history. Such models may be ident-
ified as stochastic (retarded) functional differential equations (stochastic
FDE's).

Our main concern in this book is to elucidate a general theory of stoch-
astic FDE's on Euclidean space. In order to have an idea about what is act-
ually going on in such differential systems, let us consider the simplest
stochastic delay differential equation. For a non-negative number r > 0,
this looks like  'i®

dx(t) = x(t-r) dw(t) (SDDE)

where w is a one-dimensional Brownian motion on a probability space (9,F,P)
and the solution X is a real-valued stochastic process. It is interesting to .-
compare (SDDE) with the corresponding deterministic delay equation 1 B

dy(t) = y(t-r)dt. (DDE)

One can then immediately draw the following analogies between (SDDE) and (DDE):

(a) If both equations are to be integrated forward in time and starting from
zero, then it is necessary to specify a priori an initial process {6(s):

-r < s < 0} for (SDDE) and a deterministic fuention n:[-r,0] - R for (DDE).

In the ordinary case (r = 0), a simple application of the (Itd) calculus gives
the following particular solutions of (SDDE) and (DDE) in closed form:

t

ew(t)_ét, y(t) =e", t €R.

x(t) =

For positive delays (r > 0), no simple closed-form solution of (SDDE) is known
to me. On the other hand, (DDE) admits exponential solutions y(t) = ekt, t€R,

where X\ € € solves the characteristic equation

(i) -



AR

(b) When r > 0, both (SDDE) and (DDE) can be solved uniquely through g, n,
respectively just by integrating forward over steps of size r; e.g.

t
8(0) + j o(u-r)dw(u) 0<t<r
xlt) = { 0
a(t) -r<t<?0
and
t
n(0) + J n(u-r)du 0<t<r
y(t) ={ B
n(t) -r<t<?0

Similar formulae hold over the successive intervals [r,2r], [2r,3r], etc.

(c) In just the same way as the continuation property fails for actual sol-
utions y:[-r,o) =R of (DDE), it is clear that a Markov property cannot hold
for solutions {x(t): t > -r} of (SDDE) in R when r > 0. Heuristically speak-
ing, a positive delay upsets Markov behaviour in a stochastic delay equation.

(d) To overcome the difficulty in (c), we let C = C([-r,0],R) denote the
Banach space of all continuous real functions on [-r,0] given the supremum
norm For each t > 0, pick the sZice of the solution paths over the
interval [t-r,t] and so obtain trajectories {xt: t > 0}, {yt:t > 0} of (SDDE)
and (DDE) traced out in C. It now follows fromour results in Chapter III
(Theorems (III.1.1), (III.2.1), (III.3.1)) that trajectories {xt:t > 0} des-
cribe a time-homogeneous continuous Feller process on C.

(e) As functions of the initial path n € C, trajectories {nxt:t >0},
{”yt: t > 0} of (SDDE) and (DDE) through n define a trajectory field

T3:C » c2(,0), t>o0,

n
ne X

and a semi-flow

T‘t*:c»c, t>0

ﬂ“*nyt

(i)



respect1ve1y.
Both T and T are continuous linear, where [ (Q C) is the complete space
of all F-measurable 8:Q~C such that JQHe(w)Hc dP(w) < » , furnished with

the £2 semi-norm

2 1/2
0 =[] llelw)|lg dP(w)]1 /",
loll o= tf leig &

(Cf. Theorem (II.3.1)). However, in Chapter V §3, we show that the trajec-
tory_fielq Ti, t > 0, does not admit 'good' sample function behaviour., Thus,
despite the fact that Borel measurable versions always exist, no such version
of the trajectory field has almost all sample functions locally bounded (or
even linear) on C (cf. Corollary (V.4.7.1), V §3, VI §3). It is intriguing
to observe here that this type of erratic behaviour is peculiar to delayed
diffusions (SDDE) with r > 0. Indeed for the ordinary case r = 0 it is well-
known that the trajectory field has sufficiently smooth versions with almost
all sample functions diffeomorphisms of Euclidean space onto itself (Kunita
[45], Ikeda and Watanabe [35], Malliavin [51], Elworthy [19], Bismut [5]).

(f) At times t > r, the deterministic semi-flow T maps cont1nuous paths
into C1 paths, while the corresponding trajectory f1e1d T takes continuous
paths into a-HYlder continuous ones with 0 < a < 3 (cf. Theorem (v. 4.4)).

Now our discussion has so far been with reference to the rather special
examples of stochastic and deterministic delay equations (SDDE) and (DDE)
above. However, this is indeed no serious restriction; it is one of our main
contentions in this book that the observations (a) - (f) are essentially valid
for a much wider class of stochastic FDE's than just (SDDE). Thus in Chapter
II we establish existence, uniqueness and continuous dependence on the initial
process for solutions to general stochastic FDE's of the form

dx(t) = g(t,xt)dz(t), t>0

=0 € nz(n,c)

X0
where the coefficient process g:l!>'0 x £2(Q,C) - £2(Q,Rn) and the initial
process 0 € LZ(Q,C) are given, with z a McShane-type noise on a filtered
probability space (Q’F’(Ft)t>0’P)‘ (Refer to Conditions (E)(i) of Chapter
11).

Chapter III essentially says that for systems of type

(iid)



dx(t) = H(t,xt)dt + G(t,xt)dW(tL £ > 0, Xg =N € C

the trajectory field {n :t > 0} describes a Feller process on the state
space C. Here the drift coefficzent H: R>0 x C »R" takes values in R" and
the diffusion coefficient G.R>0 x C » L(R ,R ) has values in the space
L(Rm,Rn) of all linear maps R" > R". The noise wis a (standard) m-dimensional
Brownian motion. If the stochastic FDE is autonomous, the trajectory field
is a time-homogeneous diffusion on C.

In Chapter IV we look at autonomous stochastic FDE's

ax(t) = Hix,)dt +.G(xt)d\u.(t)

and investigate the structure of the associated one-parameter semi-group
{pt}t>0 given by the time-homogeneous diffusion on C. A novel feature of

such diffusions when r > 0 is that the semi-group {Pt}t>0 is never strongly
continuous on the Banach space Cb(CJR) = Cb of all bounded uniformly con-
tinuous real-valued functions on C endowed with the supremum norm (Theorem
(IV. 2.2)). Hence a weak generator A of {Pt}t>0 can be defined on the
latter's domain of strong continuity Cb < Cb and a general formula for A is
established in Theorem (IV. 3.2). Due to the absence of non-trivial differ-
entiable functions on C having bounded supports, we are only able to define

a weakly dense class of smooth functions on C which is rich enough to generate
the Borel c-algebra of C. These are what we call quasi-tame functions (IV §4).
On such functions the weak generator assumes a particularly simple and con-
crete form (Theorem (IV. 4.3)).

Distributional and sample regularity properties for trajectory fields of
autonomous stochastic FDE's are explored in Chapter V. We Took at two extreme
examples: the highly erratic delayed diffusions mentioned above, and the case
of stochastic FDE's with ordinary diffusion coefficients viz.

dx(t) = H(xt)dt + g(x(t))dw(t), t > 0.

If g satisfies a Frobenius condition, the trajectory field of the latter
class admits sufficiently smooth and locally compactifying versions for t > r
(Theorem (V. 2.1), Corollaries V (2.1.1) - V (2.1.4)). 1In general, the
compactifying nature of the trajectory field for t > r is shown to persist in
a distributional sense for autonomous stochastic FDE's with arbitrary
Lipschitz coefficients (Theorems (V. 4.6), (V. 4.7)).

(iv)



There are many examples of stochastic FDE's. In Chapters VI and VII we
highlight only a few. Among these are stochastic ODE's (r = 0, VI §2),
stochastic delay equations VI §3), linear FDE's forced by white noise (VI
§4), a model for physical Brownian motion (VII §2), stochastic FDE's with
discontinuous initial data (VII §3), stochastic integro-differential equations
(VII s4), and stochastic FDE's with an infinite memory (r =, VII §5). Chapter
VII contains also some open problems and conjectures with a view to future
developments.

From a historical point of view, equations with zero diffusions (RFDE's)
or zero retardation (stochastic ODE's) have been the scene of intensive study
during the past few decades. There is indeed a vast amount of literature on
RFDE's e.g. Hale [26], [27], [28], Krasovskii [43], E1'sgol'tz [18], Mishkis
[56], Jones [42], Banks [3], Bellman and Cooke [4], Halanay [25], Nussbaum
[62], [63], Mallet-Paret [49], [50], Oliva [64], [65], Mohammed [57], and
others. On stochastic ODE's, one could point out the outstanding works of
Ito [36], [37], [38], Ito and McKean [40], McKean [52], Malliavin [51],
McShane [53], Gihman and Skorohod [24], Friedman [22], Stroock and Varadhan
[73], Kunita [45], Ikeda and Watanabe [35], and Elworthy [19]. However,
general stochastic FDE's have so far received very little attention from
stochastic analysts and probabilists. In fact a surprisingly small amount
of literature is available to us at present on the theory of stochastic FDE's.
The first work that we are aware of goes back to an extended article of Ito
and Nisio [41] in 1964 on stationary solutions of stochastic FDE's with
infinite memory (r = «). The existence of invariant measures for non-linear
FDE's with white noise and a finite memory was considered by M. Scheutzow in
[69], [70].

Apart from Section VII §5 and except when otherwise stated, all the results
in Chapters II-VII are new. Certain parts of Chapters II, III and IV were
included in preprints [58], [59], [60], by the author during the period 1978-
1980. Section VI §4 is joint work of S.E.A. Mohammed, M. Scheutzow and H. V.
Weizsdcker.

The author wishes to express his deep gratitude to K.D. Elworthy, K.R.
Parthasarathy, P. Baxendale, R.J. Elliott, H.v. Weizsdcker, M. Scheutzow and
S.A. Elsanousi for many inspiring conversations and helpful suggestions.

For financial support during the writing of this book I am indebted to
the British Science and Engineering Research Council (SERC), the University
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of Khartoum and the British Council.
Finally, many thanks go to Terri Moss who managed to turn often illegible
scribble into beautiful typescript.

Salah Mohammed
Khartoum 1983.
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I Preliminary background

§1. Introduction

In this chapter we give an assortment of basic ideas and results from
Probability Theory and Linear Analysis which make necessary prerequisites
for reading the subsequent chapters. Due to limitations of space, almost
all proofs have been omitted. However, we hope that the referencing is
adequate.

§2. Measure and Probability

A measurable space (Q,F) is a pair consisting of a non-empty set 2 and a
o-algebra F of subsets of Q. If E is a real Banach space, an E-valued
measure u on (Q,F) is a map u:F - E such that (i) w(®) =0, (ii) u is o-addi-
tzve i.e. for any disjoint countable famlly of sets {Ak}k 1 in F the series

T u(A ) converges in E and u( U A ) . T u(A ). When E =R, u is called
k=1 k=1 k=1
a signed measure and if u(F)iR>0 it is called a positive measure. If

sup {|u(A)|: A € F} < », u is a finite measure. A positive finite measure
P on (R,F) such that P(Q) = 1 is a probability measure on Q; the triple
(2,F,P) is then a probability space. The set of all finite real-valued
measures on 2 is denoted by M(2) and the subset of all probability measures
by Mp(ﬁ).

A probability space (2,F,P) is complete if every subset of a set of P-
measure zero belongs to F i.e. whenever B € F, P(B) = 0, A < B, then A € F.
In general any probability space can be completed with respect to its under-
lying probability measure. Indeed let (Q,F,P) be an arbitrary probability
space and take

?p={AuA:AeF,AcAoeF, P(8,) =

to be the completion of F under P. Extend P to P by setting P(Au4A) = P(A),
A c AO, P(AO) =0. Then (2,FP,P) is the smallest P-complete probability space
with F c FP, Because of this property, we often find it technically simpler
to assume from the outset that our underlying probability space is complete.

1



When Q is a Hausdorff topological space and F is its Borel o-algebra,
Borel @, generated by all oben (or closed) sets, a ineasure u on Q is regular if

u(B)

sup {u(C) : C = B, C closed}

inf {u(U) : B < U, U openl.

If Q is metrizable, every u € M(2) is regular and hence completely determined
by its values on the open (or closed) sets in Q. (Parthasarathy [66], Chap-
ter II, Theorem 1.2, p. 27). '

Let @ be a Hausdorff space and E a real Banach space. An E-valued measure
uoon (Q, Borel Q) is tight if (i) sup {|u(B)|: B € Borel Q} < =, where |- |
denotes the norm on E; and (ii) for each € > 0, there is a compact set Ke in
Q such that lu(ﬂhke)l <e

Theorem (2.1): Let Q be a Polish space i.e. a complete separable metrizable
space. Then every finite real Borel measure on Q is tight.

Proof: Parthasarathy ([66], Chapter II, Theorem 3.2, p. 29); Stroock and
Varadhan ([73], Chapter 1, Theorem (1.1.3), pp. 9-10). o

Let Q@ be a separable metric space and F = Borel 2. Denote by Cb(Q,R) the
Banach space of all bounded uniformly continuous functions ¢:Q2 -~ R given the
supremum norm

o1l g e {Jo(n)]: n € 2.

The natural bilinear pairing
{eygedt Cb(Q,R) x M(2) >R

<P, > = ¢(n) du(n), ¢ € cb(sz,R), U E M),

induces an embedding
Q) —> c (2.R)"
H — <',1J>

where Cb(Q,R)* is the strong dual of Cb(Q,R). Indeed each u € M(Q) corre-
sponds to the continuous linear functional
Cb(Q,R) ——> R

$ — ¢(n) du(n)

fneﬂ
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because for every ¢ € Cb(QJR)

[ et duml < llellg, vOn(@)
neaQ

P p
where v(u)(Q) = sup { £ |u(A)|: A, € F, k = 1,...,p disjoint, @ = u A,
T ket KTk k=1 K
p < @} is the total variation of u on Q (Dunford and Schwartz [15], Chapter
III, pp. 95-155). As a subset of Cb(Q,R)* give M(Q) the induced weak * top-
ology. Now this turns out to be the same as the weak toplogy or vague top-

ology on measures because of the following characterizations.

Theorem (2.2): Let Q be a metric space and u, o € M(2) for k = 1,2,3,... .
Then the following statements are all equivalent:

(1) M > B as k> in the weak * topology of M(R);:

(ii) 1im

I ¢(n)du(n), for every ¢ € cb(Q,R);
k- ‘nef

stmang) = |
: ne

(iii) 1im sup uk(C) < u(C) for every closed set C in Q;
k

(iv) lim inf uk(U) > u(U) for every open set U in Q;
k

(v) 112 uk(B) = u(B) for every B E’éorel Q2 such that u(oB) = 0.

For proofs of the above theorem, see Parthasarathy ([66] Chapter II,
Theorem 6.1, pp. 40-42) or Stroock and Varadhan ([73], Theorem 1.1.1, pp.
7-9).

The weak topology on M(Q), when @ is a separable metric space, can be
alternatively described in the following two equivalent ways:

(a) Define a base of open neighbourhoods of any ¥ € M(2) by

Uy (Bpaneestis €ppunnty) = L2 € M@, [0 av -0, aul <

p

k=1,2,...,p}

where ¢1,...,¢p € Cb(QJR), 91,92,...,€p >0



(b) Furnish M(Q) with a metric p in the following manner. Compactify the
separable metric space Q to obta1n 5 Then C (Q,R) is Banach space- 1somorph1c.
to the separable Banach space C(QJR) of all- cont1nuous real functions on Q,
given the supremum norm. Pick a countable densg sequence {¢k}k=1 in Cb(Q,R)
and define the metric p on M(Q) by

> 1
plu,v) k§1 EET[;;HE-—- | JQ ¢y du JQ ¢y v

b
u,v € M(Q) (Stroock and Varadhan [73], Theorem 1.1.2, p. 9; Parthasarathy
[66], pp. 39-52). ~Note that M(Q) is complete if and only if Q is so. Sim-
i]ar]y,bb(n) is compact if and only if Q is compact. More generally compact
subsets of M(Q) are characterized by the well-known theorem of Prohorov given
in Chapter V (Theorem \(V.4.5)).

There is a theory of (Bochner) integration for maps X:Q - E where E is a
real Banach space and (Q,F,u) a real measure space (Dunford and Schwartz [15],
Chapter III §1-6).

On a probability space (Q,F,P) an (F, Borel E)-measurable map X:Q - E is
called an E-valued random variable. Such a map is P-integrable if there is a
sequence Xn:Q +E, n=1,2,..., of simple (F, Borel E)-measurable maps so that

Xn(w) + X(w) as n » « for a.a. w € Q and 1im |Xn(w)-Xm(w)|EdP(m) =02
m,n->e 7/ weQR

Define the expectation of an integrable random variable X:Q -+ E by

EX =J X(w)dP(w) = Tim J' X (w)dP(w) € E.
Q N 20
This definition-is independent of the choice of sequence {Xn}:=1 converging
a.s. to X (Rao [67], Chapter I, §1.4; Yosida [78], Chapter V §5, pp. 132-136).
For a separable Banach space E, X: 2~ E is a random variable if and only
if one- of the following conditions holds:

(i) There is a sequence Xn:Q ~E, n’=1,2,..., of simple (F, Borel E)-measur-
able maps such that Xn(w) > X(w) as n > = for a.a. w € Q3

(i1) X is weakly measurable i.e. for each x € E*, x°X:Q - R is (F, Borel R)-
measurable.
(Elworthy [19], Chapter I, §1(C) pp. 2-4; Rao [67], Chapter I §1.4).
Denote by £%(9,E3F) the real vector space of all E-valued random variables
X:Q -+ E on the probability space (?,F,P). The space £%(0,E;F) is a complete

4



TVS under the complete pseudo-metric

d(XyXy) = inflesP{w:w € Qs [X g (0)=Xp(w) |g >e} 2 € > 0]

for X1, X2 € LO(Q,E;F). The norm in our real Binach space is always denoted
by [ Or sometimes just | .|« A sequence {Xn}n=1'°f random variables
X,:% > E converges in probability to X € £%(,E5F) if for every € > 0
Tim P{w:w € @, IXn(w) - X(w)lE > €} = 0. A random variable X:Q + E is

N>

(Bochner) integrable if and only if the function

IX(-)|E : R e I?o
w—— [X(W) |,

is P-integrable, in which case |[o X(w)dP(w)|; < [o[X(w)[; dP(v) i.e.
]EXIE < E[X(-) g- The space £1(Q,E;F) of all integrable random variables is
a complete real TVUS with respect to the £1-semi-norm

. Lo
IIXH£, . fﬂ |X(w) [¢ dP(w), X € 4 (S.E3F)-

Similarly for any integer k > 1 define the complete space rk(Q,E;F) of all
F-measurable maps X:Q - E such that JQ |x(w)|k dP(w) < « , endowed with the
semi-norm

- k 1/k
HXIII:k ¥ []QIX(m)lE dP(w)17/" .

Note that the spaces ck(ﬂ;E;F) become the real Banach spaces Lk(Q,E;F) if we
identify random variables which agree on a set of full P-measure. If

Xn, X € £%N,E5F), n=1,2,..., say Xn + X as n~>® ag.s. or Xn(m) + X(w) as
n > o for a.a. w € 2 if there exist a set Qo € F of full P-measure such that
Xn(w) + X(w) as n » = for all w € QO.

The various notions of convergence for E-valued random variables are
linked by the following theorem which is proved in the same way as for real
random variables (cf. Dunford and Schwartz [15], Chapter III §2-4; Rao [67],
Chapter I §1.4 pp. 16-29; Halmos [301). _ ~
Theorem (2.3): Let X X:2 + E be random variables for n = 1,2,..., and
let E be a real separable Banach space.



(i) If Xy > Xasn->wa.s., then X+ X as n > = in probability.

(i) If X, X € c(Q.EsF), n = 1,2,... and X, > Xasnoewin & k>0,

then Xn - X as n > « in probability.

(i) af Xn + X as n » « in probability, then there is a subsequence {Xn 3.
i i=1

of {X, },-q such that X"i + X as i » « a.s.

(iv) Dominated Convergence: Let Xn € £1(Q,E;F), n=1,2,... and X GLO(Q,E;F)

be such that Xn +~ X as n > « in probability. Suppose there exists

Y € £ (@RV5F) such that, for a.a. w€ 0,[X ()| < Y(w) for all n>1. Then

X € £'(2,E5F) and j X(w)dP(w) = 11'mJ X_(w)dP(w).
9) o N

N->co

Chebyshev's inequality also holds for Banach-space-valued random variables
X. It follows trivially by applying its classical version to the real-valued
random variable |X(-)|E (Chung [7], p. 48):

Theorem (2.4) (Chebyshev's Inequality): If E is a Banach space and
e
X € £ (2E;F), k > 1, then for every ¢ > 0

Pluwiw € 0, ]X(w)]E>e}<—]EJ X(w) K dp(w).
€ Q

In particular the map

MQEE) s "'MP(EX

X—> P o X-1

is continuous, for each k > 1. If E is separable, then the above map is
continuous also for k = 0.

Tn a probability space (9,F,P), two events A,B € F are independent (under
P) if P(A n B) = P(A)P(B); two sub-c-algebras 9qs 9p Of F are independent
(under P) if P(A n B) = P(A)P(B) for all A € g, and all B € g,; two random
variables X, Y : Q> E are independent (under P) if the g-algebras o(X), o(Y)
generated by X, Y respectively are independent under P.

Theorem (2.5) (Borel-Cantelli Lemma) Let (9,F,P) be a probability space and
—_ .

{Q }k=1 < F.

| (i) 1f I P(@%) converges, then P(1im. sup %) = 0 i.e..P(1im inf ono¥)
k=1 k k

:1;



