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Preface

My purpose in this monograph is to present an essentially self-contained
account of the mathematical theory of Galerkin finite element methods as
applied to parabolic partial differential equations. The emphases and selection
of topics reflects my own involvement in the field over the past 25 years,
and my ambition has been to stress ideas and methods of analysis rather
than to describe the most general and farreaching results possible. Since the
formulation and analysis of Galerkin finite element methods for parabolic
problems are generally based on ideas and results from the corresponding
theory for stationary elliptic problems, such material is often included in the
presentation.

The basis of this work is my earlier text entitled Galerkin Finite Element
Methods for Parabolic Problems, Springer Lecture Notes in Mathematics,
No. 1054, from 1984. This has been out of print for several years, and I
have felt a need and been encouraged by colleagues and friends to publish an
updated version. In doing so I have included most of the contents of the 14
chapters of the earlier work in an dpdated and revised form, and added four
new chapters, on semigroup methods, on multistep schemes, on incomplete
iterative solution of the linear algebraic systems at the time levels, and on
semilinear equations. The old chapters on fully discrete methods have been
reworked by first treating the time discretization of an abstract differential
equation in a Hilbert space setting, and the chapter on the discontinuous
Galerkin method has been completely rewritten. 1

The following is an outline of the contents of the book:

In the introductory Chapter 1 we begin with a review of standard material
on the finite element method for Dirichlet’s problem for Poisson’s equation
in a bounded domain, and consider then the simplest Galerkin finite element
methods for the corresponding initial-boundary value problem for the linear
heat equation. The discrete methods are based on associated weak, or vari-
ational, formulations of the problems and employ first piecewise linear and
then more general approximating functions which vanish on the boundary
of the domain. For these model problems we demonstrate the basic error
estimates in energy and mean square norms, in the parabolic case first for
the semidiscrete problem resulting from discretization in the spatial variables
only, and then also for the most commonly used fully discrete schemes ob-
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tained by discretization in both space and time, such as the backward Euler
and Crank-Nicolson methods.

In the following five chapters we study several extensions and generaliza-
tions of the results obtained in the introduction in the case of the spatially
semidiscrete approximation, and show error estimates in a variety of norms.
First, in Chapter 2, we formulate the semidiscrete problem in terms of a more
general approximate solution operator for the elliptic problem in a manner
which does not require the approximating functions to satisfy the homoge-
neous boundary conditions. As an example of such a method we discuss a
method of Nitsche based on,a nonstandard weak formulation. In Chapter 3
more precise results are shown in the case of the homogeneous heat equation.
These results are expressed in terms of certain function spaces H*(2) which
are characterized by both smoothness and boundary behavior of its elements,
and which will be used repeatedly in the rest of the book. We also demon-
strate that the smoothing property for positive time of the solution operator
of the initial value problem has an analogue in the semidiscrete situation, and
use this to show that the finite element solution converges to full order even
when the initial data are nonsmooth. The results of Chapters 2 and 3 are
extended to more general linear parabolic equations in Chapter 4. Chapter
5 is devoted to the derivation of stability and error bounds with respect to
the maximum-norm for our plane model problem, and in Chapter 6 negative
norm error estimates of higher order are derived, together with related results
concerning superconvergence.

In the next six chapters we consider fully discrete methods obtained by
discretization in time of the spatially semidiscrete problem. First, in Chapter
7, we study the homogeneous heat equation and give analogues of our previ-
ous results both for smooth and for nonsmooth data. The methods used for
time discretization are of one-step type and rely on rational approximations
of the exponential, allowing the standard Euler and Crank-Nicolson proce-
dures as special cases. Our approach here is to first discretize a parabolic
equation in an abstract Hilbert space framework with respect to time, and
then to apply the results obtained to the spatially semidiscrete problem. The
analysis uses eigenfunction expansions related to the elliptic operator occur-
ring in the parabolic equation, which we assume positive definite. In Chapter
8 we generalize the above abstract considerations to a Banach space setting
and allow a more general parabolic equation, which we now analyze using
the Dunford-Taylor spectral representation. The time discretization is inter-
preted as a rational approximation of the semigroup generated by the elliptic
operator, i.e., the solution operator of the initial-value problem for the homo-
geneous equation. Application to maximum-norm estimates is discussed. In
Chapter 9 we study fully discrete one-step methods for the inhomogeneous
heat equation in which the forcing term is evaluated at a fixed finite num-
ber of points per time stepping interval. In Chapter 10 we apply Galerkin’s
method also for the time discretization and seek discrete solutions as piece-
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wise polynomials in the time variable which may be discontinuous at the now
not necessarily equidistant nodes. In this discontinuous Galerkin procedure
the forcing term enters in integrated form rather than at a finite number
of points. In Chapter 11 we consider multistep backward difference methods.
We first study such methods with constant time steps of order at most 6, and
show stability as well as smooth and nonsmooth data error estimates, and
then discuss the second order backward difference method with variable time
steps. In Chapter 12 we study the incomplete iterative solution of the finite
dimensional linear systems of algebraic equations which need to be solved
at each level of the time stepping procedure, and exemplify by the use of a
V-cycle multigrid algorithm.

The next two chapters are devoted to nonlinear problems. In Chapter 13
we discuss the application of the standard Galerkin method to a model non-
linear parabolic equation. We show error estimates for the spatially semidis-
crete problem as well as the fully discrete backward Euler and Crank-Nicolson
methods, using piecewise linear finite elements, and then pay special atten-
tion to the formulation and analysis of time stepping procedures based on
these, which are linear in the unknown functions. In Chapter 14 we derive
various results in the case of semilinear equations, in particular concerning
the extension of the analysis for nonsmooth initial data from the case of linear
homogenous equations.

In the last four chapters we consider various modifications of the stan-
dard Galerkin finite element method. In Chapter 15 we analyze the so called
lumped mass method for which in certain cases a maximum-principle is valid.
In Chapter 16 we discuss the H' and H~! methods. In the first of these, the
Galerkin method is based on a weak formulation with respect to an inner
product in H! and for the second, the method uses trial and test functions
from different finite dimensional spaces. In Chapter 17, the approximation
scheme is based on a mixed formulation of the initial boundary value problem
in which the solution and its gradient are sought independently in different
spaces. In the final Chapter 18 we consider a singular problem obtained by
introducing polar coordinates in a spherically symmetric problem in a ball in
R3 and discuss Galerkin methods based on two different weak formulations
defined by two different inner products.

References to the literature where the reader may find more complete
treatments of the different topics, and some historical comments, are given
at the end of each chapter.

A desirable mathematical background for reading the text includes stan-
dard basic partial differential equations and functional analysis, including
Sobolev spaces; for the convenience of the reader we often give references to
the literature concerning such matters.

The work presented, first in the Lecture Notes and now in this monograph,
has grown from courses, lecture series, summer-schools, and written material
that I have been involved in over a long period of time. I wish to thank my
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students and colleagues in these various contexts for the inspiration and sup-
port they have provided, and for the help they have given me as discussion
partners and critics. As regards this new version of my work I particularly
address my thanks to Georgios Akrivis, Stig Larsson, and Per-Gunnar Mar-
tinsson, who have read the manuscript in various degrees of detail and are
responsible for many improvements. I also want to express my special grat-
itude to Yumi Karlsson who typed a first version of the text from the old
lecture notes, and to Gunnar Ekolin who generously furnished me with expert
help with the intricacies of TEX.

Goteborg, July 1997

Vidar Thomée
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1. The Standard Galerkin Method

In this introductory chapter we shall study the standard Galerkin finite el-
ement method for the approximate solution of the model initial-boundary
value problem for the heat equation,

(1.1) wu—Au=f inf, fort>0,
u=0 ondf, fort>0, withu(,0)=v inQ,

where  is a domain in R¢ with smooth boundary 452, and where u = u(z, t),
u; denotes du/dt, and A = 2;;1 0?/0z?% the Laplacian.

Before we start to discuss this problem we shall briefly review the fi-
nite element method for the corresponding stationary problem, the Dirichlet
problem for Poisson’s equation,

(1.2) —Au=f inQ, withu=0 ondQ.

Using a variational formulation of this problem, we shall define an approxi-
mation of the solution u of (1.2) as a function u, which belongs to a finite-
dimensional linear space Sy of functions of z with certain approximation
properties. This function, in the simplest case a piecewise linear function on
some partition of €, will be a solution of a finite system of linear algebraic
equations. We show basic error estimates for this approximate solution in
energy and least square norms.

Using a variational form of (1.1) we proceed to discretize the parabolic
problem first in the spatial variable z, which results in an approximate solu-
tion up(-,t) in the finite element space Sj, as a solution of a finite-dimensional
system of ordinary differential equations. We then define a fully discrete
scheme by discretizing this system in time by various finite difference ap-
proximations. This yields an approximate solution U of (1.1) which belongs
to Sy, at discrete time levels. Error estimates are derived for both the spatially
and fully discrete solutions.

As a preparation for the definition of the finite element solution of (1.2),
we consider briefly the approximation of smooth functions in 2 which vanish
on Of). For concreteness, we shall exemplify by piecewise linear functions in
a convex plane domain.



2 1. The Standard Galerkin Method

Let thus 2 be a convex domain in the plane with smooth boundary 989,
and let 7, denote a partition of Q into disjoint triangles 7 such that no
vertex of any triangle lies on the interior of a side of another triangle and
such that the union of the triangles determine a polygonal domain 2, C Q
with boundary vertices on 912.

Let h denote the maximal length of the sides of the triangulation 7. Thus
h is a parameter which decreases as the triangulation is made finer. We shall
assume that the angles of the triangulations are bounded below by a positive
constant, independently of h, and sometimes also that the triangulations are
quasiuniform in the sense that the triangles of 7, are of essentially the same
size, which we express by demanding that the area of 7 € T is bounded
below by ch?, with ¢ > 0, independent of h.

Let now Si denote the continuous functions on the closure 2 of  which
are linear in each triangle of 7; and which vanish outside Q. Let {PJ};V__’_‘1 be
the interior vertices of 7,. A function in Sy is then uniquely determined by
its values at the points P; and thus depends on N, parameters. Let ®; be
the pyramid function in S, which takes the value 1 at P; but vanishes at the
other vertices. Then {®; };";1 forms a basis for Sy, and every x in S; admits
the representation

Np
x(z) =Y a;®;(z), with a; = x(P;).

j=1

A given smooth function v on Q which vanishes on d) may now be ap-
proximated by, for instance, its interpolant Iyv in Sy, which we define as the
element of Sy which agrees with v at the interior vertices, i.e.,

Nhn

(1.3) Iww(z) = ) v(P;)®;(z).

i=1

For a general 2 C R? we denote below by || - || the norm in Ly = Ly()
and by || - || that in the Sobolev space H™ = H"(Q2) = W] (Q), so that for
real-valued functions v,

2 1/2
Ioll = ol = )",
and, for r a positive integer,

a 1/2
(1.4) loll- = llollar = () ID%)?) ™",
lal<r
where, with a = (ay,...,a4), D* = (8/0z,)* - - - (0/0z4)*¢ denotes an
arbitrary derivative with respect to z of order |a| = 2?___1 aj, so that the

sum in (1.4) contains all such derivatives of order at most 7. We recall that
for functions in H} = Hj(R), i.e., the functions v with Vv = grad v in L
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and which vanish on 89, ||Vv|| and ||v||; are equivalent norms (Friedrichs’
lemma, see, e.g., [33] or [41]),

(1.5) cllvll < IVl € |lvflh, Vv € H), withe>0.

Throughout this book ¢ and C will denote positive constants, not necessarily
the same at different occurrances, which are independent of the parameters
and functions involved.

Using this notation in our plane domain {2, the following error estimates
for the interpolant defined in (1.3) are well known (see, e.g., [33] or [41]),
namely, for v € H2 N H},

(1.6) lZnv —vll < CR?|lullz and [[V(Ihv - v)|| < Chllvl2.

They may be derived by showing the corresponding estimate for each 7 € 7,
and then taking squares and adding. For an individual 7 € 7, the proof is
achieved by means of the Bramble- Hilbert lemma (cf. [33] or [41]), noting
that Ipv — v vanishes on 7 for v linear.

We shall now return to the general case of a domain Q2 in R? and assume
that we are given a family {S;} of finite-dimensional subspaces of H} such
that, for some integer r > 2 and small h,

(L.7)  inf {Jlv - x|l +AIV( -2} < CR*|lolls, forl<s<r,
XEOh

when v € H®* N H}. The number r is referred to as the order of accuracy of
the family {S,}. The above example of piecewise linear functions in a plane
domain corresponds to d = r = 2. In the case r > 2,5} often consists of
piecewise polynomials of degree at most 7 —1 on a triangulation 7} as above.
For instance, 7 = 4 in the case of piecewise cubic polynomial subspaces.
Also, in the general situation estimates such as (1.7) may often be obtained
by exhibiting an interpolation operator Iy, : H" N H} — S} such that

(1.8) [ Inv — v|| + |V (Irv = v)|| £ Ch®||v|ls, for1 <s<r

When 09 is curved and r > 2 there are difficulties in the construction and
analysis of such operators near the boundary, but the above situation may
be accomplished, in principle, by mapping a curved triangle onto a straight-
edged one (isoparametric elements). We shall not dwell on this.

We remark for later reference that if the family {Sy} is based on a family
of quasiuniform triangulations 7, and Sp consists of piecewise polynomials
of degree at most r — 1, then one has the inverse inequality

(1.9) IVxll < CR7HIxll, Vx € Sh.

This inequality follows by taking squares and adding from the corresponding
inequality for each triangle 7 € T3, which in turn is obtained by a transfor-
mation to a fixed reference triangle, and using the fact that all norms on a
finite dimensional space are equivalent, see, e.g., [41].
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The optimal orders to which functions and their gradients may be approx-
imated under our assumption (1.7), are O(h") and O(h"~!), respectively, and
we shall now attempt to construct approximations of these orders for the so-
lution of the Dirichlet problem (1.2). For this purpose we first write this
problem in weak, or variational, form: We multiply the elliptic equation by
a smooth function ¢ which vanishes on 89 (it suffices to require ¢ € H}),
integrate over 2, and apply Green'’s formula on the left-hand side, to obtain

(1.10) (Vu, Vo) = (f,9), Vo € Hy,

where we have used the Ly inner products,

(1.11) (U,u;):/vwda: (Vo,Vw) = /Z;v g;u
L O%;

In the finite element method we now pose the approximate problem of finding
a function u; € Sy such that

(112) (Vun,Vx) = (f,x), VX € Sh-

This way of defining an approximate solution in terms of the variational

formulation of the problem is referred to as Galerkin’s method, after the

Russian applied mathematician Boris Grigorievich Galerkin (1871-1945).
Note that, as a result of (1.10) and (1.12),

(1'13) (V(uh - u)1VX) =0, VX = Sh1

that is, the error in the discrete solution is orthogonal to Sy with respect to
the Dirichlet inner product (Vv, Vw).

In terms of a basis {®,}"* for the finite element space S, our discrete
problem may be stated: Find the coefficients ¢ in ux(z) = EJN="1 a;®;(z)
such that

Nn
Y ;(Ve;, V) = (f, @), fork=1,..,Ny.

i=1

In matrix notation this may be expressed as

where B = (bjx) is the stiffness matrix with elements bjx = (V®;, V®;),
f = (fi) the vector with entries fi = (f, ®x), and « the vector of unknowns
a;. The dimension of these arrays equals Nj, the dimension of S, (which
equals the number of interior vertices in our plane example above). The stiff-
ness matrix B is a Gram matrix and thus in particular positive definite and
invertible so that our discrete problem has a unique solution. To see that
B = (bji) is positive definite, we note that



1. The Standard Galerkin Method 5

d d
> it = IV (2 659;) 17 2 0.
j=1

3,k=1

Here equality holds only if V(E?=1 £;®;) = 0, so that Z‘?:l&j@j = 0 by
(1.5), and hence §; =0, j=1,...,N,.

When S}, consists of piecewise polynomial functions, the elements of the
matrix B may be calculated exactly. However, unless f has a particularly sim-
ple form, the elements (f, ®;) of f have to be computed by some quadrature
formula.

We shall prove the following estimate for the error between the solutions
of the discrete and continuous problems. Note that these estimates are of
optimal order as defined by our assumption (1.7). Here, as will always be
the case in the sequel, the statements of the inequalities assume that u is
sufficently regular for the norms on the right to be finite.

Theorem 1.1. Assume that (1.7) holds, and let up and u be the solutions
of (1.12) and (1.2), respectively. Then, for 1 <s<r,

lun — ull < Ch*Jlulls  and  [Vup = Vul| < Ch*~|ul,.
Proof. We start with the gradient. Using (1.13) we have for any x € Sp,
(1.14) IV (un — w)[|* = (V(un — u), V(un - u))

= (V(un —u), V(x — v)) < [V(ur =) IV(x = w)ll,

and hence by (1.7)
(L.15) I9an — )l < inf 190wl < Ch*~
For the Ly—norm we proceed by a duality argument. Let ¢ be arbitrary in
Lo, take ¥ € H2N H} as the solution of
(1.16) —AYy=¢ inQ, withyy=0 on 0,

and recall the fact that the solution % of (1.16) is smoother by two derivatives
in Ly than the right hand side ¢, which may be expressed in terms of the
elliptic regularity inequality

(1.17) I¥ll2 < CllAY] = Cligll-
For any v, € S, we have
(1.18) (up —u,p) = —(up —u, AY) = (V(up — u), Vo))
= (V(un —v), V(¥ — ¥n)) < [[V(un — W) IV - ¥a)ll,
and hence, using (1.15) together with (1.7) with s =2 and (1.17),
(un —u,p) < Ch*julls hll%ll2 < Ch*|lullsllell.

Choosing ¢ = up — u completes the proof. O



