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Preface

Functional analysis plays an important role in the program of studies at the
Swiss Federal Institute of Technology. At present, courses entitled Functional
Analysis I and II are taken during the fifth and sixth semester, respectively. 1
have taught these courses several times and after a while typewritten lecture
notes resulted that were distributed to the students. During the academic year
1987/88, 1 was fortunate enough to have an eager enthusiastic group of students
that I had already encountered previously in other lecture courses. These stu-
dents wanted to learn more in the area and asked me to design a continuation
of the courses. Accordlingly, I proceeded during the academic year, following,
with a series of special lectures, Functional Analysis III and IV, for which 1
again distributed typewritten lecture notes. At the end I found that there had
accumulated a mass of textual material, and I asked myself if I should not pu-
blish it in the form of a book. Unfortunately, I realized that the two special
lecture series (they had been given only once) had been badly organized and
contained material that should have been included in the first two portions.
And so I came to the conclusion that I should write everything anew — and if
at all — then preferably in English. Little did I realize what 1 was letting myself
in for! The number of pages grew almost impercepetibly and at the end it had
more than doubled. Aslo, the English language turned out to be a stumbling
block for me; I would like to take this opportunity to thank Prof. Imre Bokor
and Prof. Edgar Reich for their help in this regard. Above all T must thank
Mrs. Barbara Aquilino, whd wrote, first a WordMARC™., and then a INITpX™
version with great competence, angelic patience, and utter devotion, in spite
of illness. My thanks also go to the Swiss Federal Institute of Technology that
generously provided the infrastructure for this extensive enterprise and to my

colleagues who showed their understanding for it.

Corneliu Constantinescu
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Introduction

This book has evolved from the lecture course on Functional Analysis I had
given several times at the ETH. The text has a strict logical order, in the style
of “Definiton - Theorem — Proof - Example — Exercises”. The proofs are rather
thorough and there are many examples.

The first part of the book (the first three chapters, resp. the first two volu-
mes) is devoted to the theory of Banach spaces in the most general sense of the
term. The purpose of the first chapter (resp. first volume) is to introduce those
results on Banach spaces which are used later or which are closely connected
with the book. It therefore only contains a small part of the theory, and several
results are stated (and proved) in a diluted form. The second chapter (which
together with Chapter 3 makes the second volume) deals with Banach algebras
(and involutive Banach algebras), which constitute the main topic of the first
part of the book. The third chapter deals with compact operators on Banach
spaces and linear (ordinary and partial) differential equations — applications of
the theory of Banach algebras.

The second part of the book (the last four chapters, resp. the last three
volumes) is devoted to the theory of Hilbert spaces, once again in the general
sense of the term. It begins with a chapter (Chapter 4, resp. Volume 3) on the
theory of C*-algebras and W™-algebras which are essentially the focus of the
book. Chapter 5 (resp. Volume 4) treats Hilbert spaces for which we had no
need earlier. Tt contains the representation theorems, i.e. the theorems on isome-
tries between abstract C*-algebras and the concrete C*-algebras of operators
on Hilbert spaces. Chapter 6 (which together with Chapter 7 makes Volume 5)
presents the theory of LP-spaces of operators, its application to the self-adjoint
linear (ordinary and partial) differential equations, and the von Neumann al-
gebras. Finally, Chapter 7 presents examples of C*-algebras defined with the
aid of groups, in particular the Clifford algebras. Many important domains of
(C~*-algebras are ignored in the present book. It should be emphasized that the
whole theory is constructed in parallel for the real and for the complex numbers,
i.e. the C"-algebras are real or complex.

In addition to the above (vertical) structure of the book, there is also
a second (horizontal) division. It consists of a main strand, eight branches,
and additional material. The results belonging to the main strand are marked
with (0). Logically speaking, a reader could restrict himself/herself to these
and ignore the rest. Results on the eight subsidiary branches are marked with
(1).(2).(3),(4),(5),(6),(7), and (8). The key is
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Infinite Matrices
Banach Categories
Nuclear Maps

- W

Locally Compact Groups
Differential Equations
Laurent Series

Clifford Algebras

Hilbert C*-Modules

Tl
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These are (logically) independent of each other, but all depend on the main
strand. Finally, the results which belong to the additional material have no
marking and — from a logical perspective — may be ignored. So the reader can
shorten for himself/herself this very long book using the above marks. Also,
since the proofs are given with almost all references, it is possible to get into
the book at any level and not to read it linearly.

We assume that the reader is familiar with classical analysis and has ru-
dimentary knowledge of set theory, linear algebra, point-set topology. and in-
tegration theory. The book addresses itself mainly to mathematicians, or to
physicists interested in C*-algebras.

I would like to apologize for any omissions in citations occasioned by the fact
that my acquaintance with the history of functional analysis is, unfortunately,

very restricted. For this history we recommand the following texts.

1. BIRKHOFF, G. and KREYSZIG, E., The Establishment of Functional
Analysis, Historia Mathematica 11 (1984), 258-321.

X

BOURBAKI, N., Elements of the History of Mathematics, (21. Topologi-
cal Vector Spaces), Springer—Verlag (1994).

3. DIEUDONNE, J., History of Functional Analysis. North-Holland (1981).

4. DIEUDONNE, J., A Panorama of Pure Mathematics (Chapter C III:
Spectral Theory of Operators), Academic Press (1982).

5. HEUSER, H., Funktionalanalysis, 2. Auflage (Kapitel XIX: Ein Blick auf
die werdende Functionalanalysis), Teubner (1986), 3. Auflage (1992).

6. KADISON, R.V., Operator Algebras, the First Forty Years, in: Procee-
dings of Symposia in Pure Mathematics 38 T (1982), 1-18.

7. MONNA, A F., Functional Analysis in Historical Perspective, John Whi-
ley & Sons (1973).
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8. STEEN, L.A., Highlights in the History of Spectral Theory, Amer. Math.
Monthly 80 (1973), 359-382.

There is no shortage of excellent books on C*-algebras. Nevertheless, we
hope that this book will be also of some utility to the mathematics commutity.
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