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Preface

Fractional Calculus deals with the study of so-called fractional order in-
tegral and derivative operators over real or complex domains and their
applications. It has its roots in 1695, in a letter from de I'Hospital to Leib-
niz. Questions such as “What is understood by Fractional Derivative?”
or “What does the derivative of order 1/3 or v/2 of a function mean?”
motivated many brilliant scientists to focus their attention on this topic
during the 18th and 19th centuries. For instance, we can mention Euler
(1738, [211]), Laplace (1812, [329]), Fourier (1822, [226]), Abel (1823, [3]),
Liouville (1832-1855, [347, 348]), Griinwald (1867, [252]), Letnikov (1868
1872, [337-339]), Riemann (1876, [478]), Laurent (1884, [333]), or Heaviside
(1893-1912, [268, 269]).

It is well known that Abel implicitly applied fractional calculus in 1823
in connection with the tautochrone problem, which was modeled through a
certain integral equation with a weak singularity of the type that appears in
the so-called Riemann-Liouville fractional integral [4]. Therefore he can be
considered the first scholar who investigated an interesting physical prob-
lem using techniques from what we today call fractional calculus. Later,
Liouville tried to apply his definitions of fractional derivatives to different
problems [347]. On the other hand, in 1882 Heaviside introduced a so-called
operational calculus which reconciliated the fractional calculus with the ex-
plicit solution of some diffusion problems. Particularly, his techniques were
applied to the theory of the transmission of electrical currents in cables
[268]. For more historic facts about the development of the fractional cal-
culus during these two centuries, the monographs by Oldham and Spanier
[433], by Ross [490], by Miller and Ross [400] and Samko et al. [501] can be
consulted.
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During the 20th century, up to 1985, we can list some of the pi-
oneer researchers in this topic, such as Weyl (1917, [577]), Hardy
(1917-1928, [259, 260]), Littlewood (1925-1928, [261, 262]), Levy (1937,
[340]), Zygmud (1934-1945, [601, 602]), M. Riesz (1936-1949, (479, 480)),
Doetsch (1937, [189]), Erdélyi (1939-1965, [207, 208]), Kober (1940,
[320]), Widder (1941, [581]), Rabotnov (1948-1980, [453, 474]), Feller
(1943-1971, [213, 214]), Maraval (1956-1971, [376, 377]), Sneddon (1957
1979, [526-528]), Gorenflo (since 1965, [245]), Caputo (since 1966, [131]),
Dzherbashyan (1970, [197]), Samko (since 1967, [500]), Srivastava (since
1968, [530, 531]), Oldham (1969, [432]), Osler (1970, [436]), Caputo
and Mainardi (since 1971, [136]), Love (since 1971, [351]), Oldham
and Spanier (1974, [433]), Mathai and Saxena (since 1978, [383]), Ross
(since 1974, [489]), McBride (since 1979, [385]), Nigmatullin (since 1979,
[425]), Oustaloup (since 1981, [437, 438]), Bagley and Torvik (since 1983,
[558, 558]), among others. As we will argue below, around 1985, new and
fertile applications of fractional differential equations emerged and this field
became part of applied sciences and engineering.

A fractional derivative is just an operator which generalizes the ordi-
nary derivative, such that if the fractional derivative is represented by the
operator symbol D® then, when a = 1, it coincides with the ordinary dif-
ferential operator D. As a matter of fact, there are many different ways to
set up a fractional derivative, and, nowadays, it is usual to see many dif-
ferent definitions. Here we must remark that, when we speak of fractional
calculus, or fractional operators, we are not speaking of fractional powers
of operators, except when we are working in very special functional spaces,
such as the Lizorkin spaces.

Fractional differential equations, that is, those involving real or com-
plex order derivatives, have assumed an important role in modeling the
anomalous dynamics of many processes related to complex systems in the
most diverse areas of science and engineering. However the interest in
the specific topic of fractional calculus surged only at the end of the last
century.

The theoretical interest in fractional differential equations as a mathe-
matical challenge can be traced back to 1918, when O’Shaughnessy [435]
gave an explicit solution to the differential equation y(* = y/z, after he
himself had suggested the problem. In 1919, Post [457] proposed a com-
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pletely different solution. Note that, at that time, this problem was not
rigorously defined, since there was no mention of what fractional derivative
was being used in the proposed differential equation. This explains why
both authors found such different solutions, and why neither of them was
wrong.

As one would expect, since a fractional derivative is a generalization of
the ordinary derivative, it is going to lose many of its basic properties; for
example, it loses its clear geometric or physical interpretation, the index law
is only valid when working in specific functional spaces, the derivative of the
product of two functions is difficult to compute, and the chain rule cannot
be straightforwardly applied. It is natural to ask, then, what properties of
fractional derivatives make them so suitable for modeling certain complex
systems. We think the answer lies in the property exhibited by such systems
of “non-local dynamics”, that is, the processes’ dynamics have a certain
degree of memory and fractional operators are non-local, while the ordinary
derivative is a local operator.

In 1974, after a joint research activity, Oldham and Spanier published
the first monograph devoted to fractional operators and their applications
in problems of mass and heat transfer [433]. In 1974, the First Conference
on Fractional Calculus and its Applications took place at the University of
New Haven, organized by B. Ross who edited the corresponding proceedings
[489]. We can think of this year as the beginning of a new age for fractional
calculus.

The stochastic interpretation for the fundamental solution of the ordi-
nary diffusion equation in terms of Brownian motion has been known since
the early years of 20th century. Physicists often mention Einstein as the
pioneer in this field [200]. Indeed, Einstein’s paper on Brownian motion
had a large success and motivated further experimental work on the atomic
and molecular hypothesis. However, five years before Einstein, L. Bachelier
published his thesis on price fluctuations at the Paris stock exchange [46].
In this thesis, the connection was already made clear between Brownian
motion and the diffusion equation. These results considered the position
of a diffusing object as the sum of independent and identically distributed
random variables leading to a Gaussian distribution in the asymptotic limit
by virtue of the central limit theorem which was refined in the first half of
the 20th century as well [215].
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In 1949, Gnedenko and Kolmogorov [237] introduced a generalization of
the classical central limit theorem for sums of random variables with infinite
second moment converging to a-stable random variables. Almost simulta-
neously, Lévy and Feller also wrote seminal contributions leading to some
controversy on priority [215]. In 1965, Montroll and Weiss [409] introduced
a process in physics, later called continuous time random walk (CTRW)
by Scher [408, 512, 513]. This process turned out to be very useful for the
theoretical description of anomalous diffusion phenomena associated to cer-
tain materials [85]. CTRWs (also known as compound renewal processes in
the mathematical community) are a generalization of the above mentioned
method for normal diffusion processes. Therefore, they became the tool
of choice for many applied scientists in order to characterize and describe
anomalous diffusive processes from the mid-20th century until today.

The use of Laplace and Fourier integral transforms helps us in proving
that, for a sub-diffusive process, the density function u(z,t) of finding the
diffusing particle in x at time ¢ is the fundamental solution of the following
time-fractional diffusion equation:

A%y = kDPu. (1)

Such a connection lets us consider the CTRW models of the subdiffusive
process as fractional differential models. Among the papers dealing with
this fact there are Balakrishnan (1985, [51]), Wyss (1986, [586]), Schneider
and Wyss (1989, [587]), Fujita (1990, [228-230]), Shlesinger, Zalavsky, and
Klafter (1993, [521]), Metzler, Glockle, and Nonnenmacher (1994, [394]),
Zaslavsky (1994, [593]), Engheta (1996, [203]), Klafter, Shlesinger, and
Zumofen (1996, [316]), Metzler and Nonnenmacher (1997, [397]), Met-
zler, Barkai, and Klafter (1999, [393]), Hilfer (2000, [280]), Anton (1995,
(282]), and many more. For a comprehensive review, we recommend
the excellent papers by Metzler and Klafter (2000-2004, [395, 396]). In
these papers, the reader finds an accurate description of fractional dif-
fusion models as well as a clear explanation of the role played by other
linear or non-linear diffusive fractional models, such as the fractional
Fokker-Planck equation.

The relationship between CTRWSs and fractional diffusion will be dealt
with in Chapters 6 and 7, as well as in several sections of Chapter 5. We
must also point out that this is perhaps the first monograph presenting
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modern numerical methods used to solve fractional differential equations
(see Chapters 2 and 3).

As a result of many investigations in different areas of applied sci-
ences and engineering and as a consequence of the relationship between
CTRWs and diffusion-type pseudo-differential equations, new fractional dif-
ferential models were used in a great number of different applied fields.
We can mention material science, physics, astrophysics, optics, signal
processing and control theory, chemistry, transport phenomena, geology,
bioengineering and medicine, finance, wave and diffusion phenomena,
dissemination of atmospheric pollutants, flux of contaminants trans-
ported by subterranean waters through different strata, chaos, and so
on. Also, the reader can find many more references, e.g., in the mono-
graphs, [204, 280, 384, 442, 453, 550, 471, 108, 309, 365, 496, 517] and
[66, 130, 145, 172, 370, 407, 508, 553, 543, 315, 92, 371]

The idea that physical phenomena, such as anomalous diffusive or wave
processes, can be described with fractional differential models raises, at
least, the following three fundamental questions:

e Are mathematical models with fractional space and/or time derivatives
consistent with the fundamental laws and well known symmetries of the
nature?

e How can the fractional order of differentiation be observed experimentally
or how does a fractional derivative emerge from microscopic models?

e Once a fractional calculus model is available, how can a fractional order
equation be solved (exactly or approximately)?

Of course, here, we must mention the very important contributions in
nonlinear non-fractional differential models which were more studied by
mathematicians than used by applied researchers, at least to describe the
dynamics of processes within anomalous media, but this is beyond the scope
of this book. However, we must remark the fractional differential models
are a complementary tool to classical methods. The reader can consult the
paper [105], where it is shown that strongly non-differentiable functions can
be solutions of elementary fractional equations.

During the last 25 years there has been a spectacular increase in the use
of fractional differential models to simulate the dynamics of many different
anomalous processes, especially those involving ultra-slow diffusion. The
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following table is only based on the Scopus database, but it reflects this
state of affairs clearly:

Table 1. Evolution in the number of publications on fractional differential equations
and their applications.

‘Words in title or abstract 1960-1980 1981-1990 1991-2000 2001-2010
Fractional Brownian Motion 2 38 532 1295
Anomalous Diffusion 185 261 626 1205
Anomalous Relaxation 21 23 70 61
Superdiffusion or Subdiffusion 0 22 121 521
Anomalous Dynamics 11 24 128 443

Anomalous Processes
Fractional Models
Fractional Relaxation
Fractional Kinetics
Fractional Dynamics
Fractional Differential Equation 1 1 74 943
Fractional Fokker-Planck Equation

Fractional Diffusion Equation

On the other hand, and from a mathematical point of view, during
the last five years we have been able to find many interesting publications
connected with applications of classical fixed point theorems on abstract
spaces to study the existence and uniqueness of solutions of many kinds of
initial value problems and boundary value problems for fractional operators.
See, e.g., [29, 327, 14, 424, 271, 13, 10, 547, 75, 177, 181].

For these reasons, we expect that fractional differential models will play
an important role in the near future in the description of the dynamics
of many complex systems. From our point of view, despite the attention
given to it until the moment by many authors, only a few steps have been
taken toward what may be called a clear and coherent theory of fractional
differential equations that supports the widespread use of this tool in the
applied sciences in a manner analogous to the classical case. Therefore we
can find here a great number of both theoretical and applied open problems.
For example, we think that three important kinds of such challenges, among
others, are the following:

e In spite of the fact that there were several attempts to formulate a de-
terministic approach of fractional differential models in many different
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areas of science and engineering, in general there have not been many
rigorous justifications of such models. A deterministic approach to frac-
tional differential models including a clear justification, as in the classical
case, is an important open problem. Such an objective comes motivated
mainly by the need to take into account the macroscopic behavior of
anomalous processes not connected to stochastic theories. An example
could be when studying the dynamics of ultrasonic waves through very
irregular media, and there are many other potential examples. The first
steps in this direction may have been done recently; see for example,
[30, 486, 590, 589, 360, 485].

In addition, we recall the paper [428] where memory, expressed in
terms of fractional operators, emerges from the initial model that does
not “hint” to the presence of memory. Also, as an example, one can
point to the literature on dielectric relaxation based on fractional ki-
netics [426] where differential equations containing non-integer operators
describing the kinetic phenomena emerge from the self-similar structure
of the medium considered. This approach recently received also its ex-
perimental confirmation [427].

The introduction of a suitable fractional Laplacian for Dirichlet and Neu-
mann problems associated to isotropic and anisotropic media. We must
remark that, in the literature, at least three different approaches were
used to solve such a problem in the isotropic case, namely the applica-
tion of the well-known fractional power of operators, the hyper-singular
inverse of one of the Riesz fractional integral operators of potential, and
the characterization by means of the corresponding Fourier transform.
The first two cases do not allow to work in wide functional spaces,
whereas in the third one, the possibility exists not to determine with
enough rigor the fractional Laplacian in the spatial field. We refer to
[379, 499, 126, 125, 137, 127] for further details.

The development of suitable and well-founded numerical methods to solve
fractional ordinary and partial differential equations, so that applied
researchers can refine their results, as in the classical case.

We will devote two chapters of this book to this problem, where the
reader can find a number of relevant references. In any case, this is still
an important open field whose development will allow quicker advances
in applied fields.
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Until now, our attention was focused on fractional differential equations
and their applications. However, fractional operators had been mainly used
for other objectives in the past. We will illustrate this fact with the fol-
lowing two examples connected with potential theory: the n-dimensional
fractional operators introduced by Riesz (1932-1945), as a generalization of
the Riemann-Liouville integral operators, were used to write the solution
of certain ordinary partial differential equations explicitly [479]; Erdélyi
and Sneddon (1960-1966) used the so-called Erdélyi-Kober fractional in-
tegral operators to solve explicitly certain dual integral equations (see
[208, 527]).

Following such ideas, many other authors used fractional operators
to generalize certain classical theories or to simplify classical problems.
So, many special functions were expressed in terms of elementary func-
tions by using fractional operators by Kiryakova [314]; the singularities of
certain known ordinary differential equations were avoided in the frame-
work of fractional calculus (see [487, 484]), or Riewe, Agrawal, Klimek,
Baleanu et al. have initiated a fractional generalization of variational
theory (see [481, 317, 15, 54, 62, 468, 34, 42, 298, 68, 542]), etc. Re-
markable are the results obtained in control theory through the frac-
tional generalization of the well-known PID controllers (see, for example,
(442, 549, 550, 456, 441, 496, 407, 130]).

Therefore, we can use the label “fractional calculus models” when we
refer to a generalization of a classical theory in the framework of fractional
calculus. In this sense, in Chapter 4 and in a part of Chapter 5, we develop
fractional generalizations of important classical theories. Below, we are
going to explain such issues with more detail.

This book consists of a total of seven chapters, one appendix and an
extensive bibliography.

Chapter 1 contains preliminary material that can be skipped by in-
formed readers. This chapter is here to help the reader in reducing the use
of external sources.

As we have seen, fractional-order models are a generalization of classical
integer-order models. However, it turns out that these models are also in
need of more general techniques in order to provide analytical solutions in
closed form and/or qualitative studies of the solutions. As in the classical
case, such techniques are not enough in many practical relevant cases. Thus



Preface xxi

there is a substantial demand for efficient numerical techniques to handle
fractional derivatives and integrals and equations involving such operators.
Many algorithms were proposed for this purpose in the last few decades,
but they tend to be scattered across a large number of different publications
and, moreover, an appropriate and rigorous convergence analysis is often
not available. Thus, a user who needs a numerical scheme for a particular
problem often has difficulties in finding a suitable method. As a partial
remedy to this state of affairs, in Chapters 2 and 3 we collect the most im-
portant numerical methods for practically relevant tasks. We have focused
our attention on those algorithms whose behavior is well understood and
that have proven to be reliable and efficient.

The fourth chapter is devoted to generalize the classical theory of Stir-
ling numbers of first s(n, k) and second kind S(n, k) in the framework of the
fractional calculus, basically using fractional differential and integral oper-
ators. Such special numbers play a very important role in connection with
many applications, in particular in computing finite difference schemes and
in numerical approximation methods. Such generalizations have been an
open problem whose solution was approached by Butzer and collaborators,
[111-115, 265], during the last years of the 20th century. We have worked
out the mentioned generalization with respect to both parameters, n and
k, so that they can be real or complex numbers, but keeping almost any
known property corresponding to the classical numbers. Moreover, in this
chapter, we introduce a number of important, applications; for instance we
connect the generalized Stirling functions with the corresponding infinity
differences and with the fractional Hadamard derivative or with the frac-
tional Liouville operators. On the other hand, we must remark that our
treatment of this issue is not the ultimate one, even if we believe that our
theory can open new and interesting perspectives to apply such results to
approach to the calculus of infinite difference or fractional difference equa-
tions. The latter could be very important in the context of modeling the
dynamics of anomalous processes.

Classical calculus of variations as a branch of mathematics is recognized
for its fundamental contributions in various areas of physics and engineer-
ing. The history of variational calculus started already with problems well-
known to Greek philosophers as well as scientists and contains illustrative
contributions to the evolution of the science and engineering. During the
last decade, when fractional calculus started to be applied intensively to
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various problems related to real world applications, it was pointed out that
it should be applied also to variational problems. As a result of this fusion
the theory of fractional variational principles was created. This new theory
consists of two parts, the first one is related to the mathematical general-
ization of the classical theory of calculus of variations and the second one
involves the applications.

The fractional Euler-Lagrange equations recently studied are a new set
of differential equations involving both the left and the right fractional
derivatives.

As a result of interaction among fractional calculus, delay theory and
time scales calculus, we observed that the new theory started to be general-
ized according to new results obtained in these fields. Also the applications
of this new theory in so called fractional differential geometry started to
be reported as well as with some promising generalizations of the classical
formalisms in physics and in control theory.

An important feature of fractional variational principles is that they
contain classical ones as a particular case when fractional operators con-
verge to ordinary differential operators. Besides, fractional optimal control
is largely developed and fractional numerical methods started to be applied
to solve the fractional Euler-Lagrange equations. At this stage, we are con-
fident that fractional variational principles will lead to new discoveries in
several fields.

In Chapter 5, we introduce the reader of this book to the extension
of variational calculus within the framework of fractional calculus, pre-
senting a theory of fractional variational principles. Moreover, in the
first part of the mentioned chapter, we consider the study of solutions
for the corresponding fractional Euler-Lagrange equations, a new set of
fractional differential equations involving both the left and right fractional
derivatives.

In the second part of this chapter, we study the discrete and continuous
case of the called fractional Hamiltonian dynamics, which generalizes the
classical dynamics of Hamiltonian systems.

As already discussed, there is a deep connection between the fractional
diffusion equation and the stochastic models for anomalous diffusion called
CTRWs (continuous-time random walks). These processes, as discussed by
physicists, are an instance of semi-Markov processes. This mild generaliza-
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tion already leads to an infinite memory in time. Considered non-physical
by several authors, spatial non-locality is connected to the power-law be-
havior of the distribution of jumps. All these phenomena are described by
means of a suitable stochastic process, the fractional compound Poisson
process with symmetric a-stable jumps which makes quite simple the proof
of the generalized central limit theorem. This is the subject we study in
Chapter 6.

In Chapter 7, we present an overview of the application of CTRWs to
finance. In particular we give a brief presentation on the application of
CTRWs, and implicitly fractional models, to option pricing and we point
the reader to other applications such as insurance risk evaluation and eco-
nomic growth models.

When tick-by-tick prices are considered, not only price jumps, but also
inter-trade durations seem to vary at random. Therefore, as a first ap-
proximation, it is possible to describe durations as independent and identi-
cally distributed random variables. In this framework, position is replaced
by log-price and jumps in position by tick-by-tick log-returns. The inter-
esting case comes when inter-trade durations do not follow a exponential
distribution.

The material covered in the seven chapters is complemented by an
appendix where we explicitly provide the implementation of the algo-
rithms described in the previous chapters, in several common programming
languages.

Finally we include an extensive bibliography which, however, is far from
being exhaustive.

During the time we have dedicated to write this monograph in this
present form, the authors have gratefully received invaluable suggestions
and comments from researches at many different academic institutions and
research centers around the world. Special mention ought to be made of
the help and assistance so generously and meticulously provided by col-
leagues Thabet Abdeljawad, Mohamed Herzallah, Fahd Jarad, Sami I.
Muslih, Eqab M. Rabei, Margarita Rivero, Luis Rodriguez-Germa, and
Luis Vazquez.

Here, we would like to remember the great inspiration and support we
received from Professors Om P. Agrawal at SIU Carbondale, Paul Butzer
at RWTH Aachen University, Rudolf Gorenflo at Freie Universitat Berlin,
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Anatoly A. Kilbas at State University of Belarus, Raoul R. Nigmatullin at
University of Kazan, Hari M. Srivastava at the University of Victoria, J. A.
Tenreiro Machado at ISEP Porto, George Zaslavsky at Courant Institute,
Neville J. Ford at the University of Chester and Alan D. Freed at Saginaw
Valley State University.

Finally, the authors would like to thankfully acknowledge the finan-
cial grants and support for this book project, which were awarded by the
MICINN of Spain (Projects No. MTM2007/60246 and MTM2010/16499),
the Belarusian Foundation for Funding Scientific Research (Project No.
F10MC-24), the Research Promotion Plan 2010 of Universitat Jaume I and
the Basque Center for Applied Mathematics in Spain, Cankaya Univer-
sity of Turkey, and Technische Universitit Braunschweig, Germany, among
others.

August 2011 Dumitru Baleanu
Kai Diethelm

Enrico Scalas
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