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Preface to the second edition

When I wrote the first edition of Principles of Proteomics in 2003, it was
the first book that had attempted to cover the entire field of proteomics in
broad strokes rather than focusing on specialized individual technologies.
The first edition was published when proteomics was an emerging disci-
pline, still unsure of its footing although confident in its abilities, with many
technology platforms jostling for attention and consideration. Nearly a
decade later, writing the second edition has proven a significant challenge.
Although proteomics has stabilized, with certain technologies becoming
unshakably established and others becoming obsolete, the cutting edge still
boasts a rich and diverse source of novel technology platforms seeking to
capture the proteome in ever more detail and on a scale barely conceived at
the beginning of the millennium. But proteomics has also become increas-
ingly commercialized. It is a billion-dollar industry, with many companies
vying for attention, providing technologies, solutions, and contract research
to other companies, who are in turn interested in using proteomics to find
disease biomarkers, drug targets, vaccine candidates, novel chemical inhib-
itors, improved enzymes for industrial processes, and products to protect
plants, the food chain, and the environment. Keeping up with the pace of
change while still being aware of the fundamental aspects of proteomics, the
core principles that make it possible in the first place, is a difficult task made
more difficult by the dominant position of proprietary technologies, and the
explosion in patents relating to proteomic technologies and strategies for
processing proteomics data.

Despite the above, we must remember that proteomics is still about the
global analysis of proteins. It seeks to achieve what genomics cannot—
that is, a complete description of living cells in terms of all their functional
components, brought about by the direct analysis of those components
rather than the genes that encode them. Proteins offer a rich source of data,
including sequences, structures, and biochemical and biological functions,
which are influenced by modifications, subcellular localization, and, per-
haps most important of all, the interactions among proteins and with other
molecules. If genes are the instruction carriers, proteins are the molecules
that execute those instructions. Genes are the instruments of change over
evolutionary timescales, but proteins are the molecules that define which
changes are accepted and which are discarded. It is from proteins that we
shall learn how living cells and organisms are built and maintained and
what leads to their dysfunction.

Although now firmly established, proteomics is still a difficult subject to pen-
etrate for those not familiar with the terminology and technology, including
experts in one area of proteomics venturing into another. There is still a
great deal of jargon and many hyphenated acronyms that make sense once
explained but otherwise remain mystifying; and there is still a high turnover
of methods at the cutting edge, making it difficult to keep up. This situation
is exacerbated by the increasing integration of proteomics with other areas
of large-scale biology as researchers attempt to model cellular processes by
looking not only at the functional components, but also at the information
(genes, transcripts) and the outputs (metabolites, phenotypes) and how
these are linked into networks and systems.
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As I stated in the preface to the first edition, it is my hope that this book will
be useful to those who need a broad overview of proteomics and what it has
to offer. It is not meant to provide expertise in any particular area: there are
plenty of other books that deal with specific technologies and their applica-
tions, the processing and archiving of proteomic data, and the integration of
proteomics with other disciplines. The aim of this book is to pull together the
different proteomics technologies and their applications, and present them
in what I hope is a simple, logical, and user-friendly manner. After a brief
introductory chapter providing an updated perspective on the history of pro--
teomics since the turn of the millennium, the major proteomics technologies
are discussed in more detail: two-dimensional gel electrophoresis, multidi-
mensional liquid chromatography, mass spectrometry, sequence analysis,
structural analysis, methods for studying protein interactions and modifica-
tions, and the development and applications of protein microarrays. These
chapters have been broadened to account for new developments since the
first edition, but I have made every effort to keep the material as concise as
possible, since the brevity of the first edition was one of its strengths. I have
assumed necessarily that the reader has a working knowledge of molecu-
lar biology and biochemistry. Each chapter has a short bibliography listing
classic papers and useful reviews that will help the interested reader delve
deeper into the literature.

The second edition would not have been possible without the help and sup-
port of the editorial team at Garland Science, so I extend special thanks to
Gina Almond, David Borrowdale, and Ioana Moldovan for their dedication
and assistance during the writing and revision process. I would also like to
thank friends and colleagues who provided feedback on the first edition or
suggestions for the second edition or who pointed out errors and omissions.

As ever, this book is dedicated with love to my parents, Peter and Irene, to my
children, Emily and Lucy, and to Hannah, Joshua, and Dylan.

Richard M. Twyman
August 2013

Instructor Resources Website

Accessible from www.garlandscience.com, the Instructor Resource. Site
requires registration and access is available only to qualified instructors. To
access the Instructor Resource Site, please contact your local sales represen-
tative or email science@garland.com.

The images in Principles of Proteomics are available on the Instructor
Resource Site in two convenient formats: PowerPoint® and JPEG, which have
been optimized for display. The resources may be browsed by individual
chapter or a search engine.

Resources available for other Garland Science titles can be accessed via the
Garland Science Website.

PowerPoint is a registered trademark of Microsoft Corporation in the United States
and/or other countries.
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FIGURE 1.4 Expression analysis with DNA microarrays.

(a) Spotted microarrays are produced by the robotic printing of
amplified cDNA molecules onto glass slides. Each spot or feature
corresponds to a contiguous gene fragment of several hundred
base pairs or more. (b) High-density oligonucleotide chips are
manufactured using a process of light-directed combinatorial
chemical synthesis to produce thousands of different sequences in
a highly ordered array on a small glass chip. Genes are represented
by 15-20 different oligonucleotide pairs (PM, perfectly matched;
MM, mismatched) on the array. (c) On spotted arrays, comparative
expression assays are usually carried out by differentially labeling
two mRNA or cDNA samples with different fluorophores. These are
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hybridized to features on the glass slide and then scanned to detect
both fluorophores independently. Colored dots labeled X, Y, and

Z at the bottom of the image correspond to transcripts present at
increased levels in sample 1 (X), increased levels in sample 2 (Y), and
similar levels in samples 1 and 2 (Z). (d) On Affymetrix GeneChips,
biotinylated cRNA is hybridized to the array and stained with a
fluorophore conjugated to avidin. The signal is detected by laser
scanning. Sets of paired oligonucleotides for hypothetical genes
present at increased levels in sample 1 (X), increased levels in sample
2 (Y), and similar levels in samples 1 and 2 (Z) are shown. (From
Harrington CA, Rosenow C & Retief J (2000) Curr. Opin. Microbiol. 3,
285. With permission from Elsevier.)




FIGURE 4.1 The watershed method for contour finding on two-dimensional gel images. (a) Any grayscale
image can be considered as a topographic surface. If flooded from its minima without allowing water from
different sources to merge, the image is partitioned into catchment basins and watershed lines, but in practice
this leads to over-segmentation. (b) Therefore, markers (red shapes) are used to initiate flooding, and this
reduces over-segmentation considerably. (Adapted from images by Serge Beucher, CMM/Ecole Nationale
Supérieure des Mines de Paris.)

FIGURE 4.4 Two-dimensional DIGE. Overlay
image of Cy3- (green) and Cy5- (red) labeled
test-spiked Erwinia carotovora proteins. The
protein test spikes were three conalbumin
isoforms (arrowheads) and two myoglobin
isoforms (arrows). Spots that are of equal
intensity between the two channels appear
yellow in the overlay image. As spike proteins
were eight times more abundant in the Cy5
channel, they appear as red spots in the overlay.
The gel is oriented with the acidic end to the left.
(From Lilley KS, Razzaqg A & Dupree P (2002)
Curr. Opin. Chem. Biol. 6, 46. With permission
from Elsevier.)
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BOX 4.5 FIGURE 2 Quantitative difference between the haploid and diploid yeast
proteome (overall fold change). Proteins to the left (becoming deeper green) are more

strongly represented in haploid cells. Proteins to the right (becoming deeper red) are

more strongly represented in diploid cells. (From de Godoy LMF, Olsen JV, Cox J et al.
(2008) Nature 455, 1251-1254. With permission from Macmillan Publishers Ltd.)
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FIGURE 6.1 ldentification of related proteins least four of the proteins) are shaded, and arrows
by structural comparison. (a) A ribbon diagram indicate B-strand regions in the proteins. There is little
comparison of AdipoQ (left) and TNFa (right). The sequence similarity between AdipoQ and the TNF
structural similarity is equivalent to that within the proteins (for example, 9% identity between AdipoQ
TNF family. (b) Structure-based sequence alignment and TNFa), so BLAST searches would not identify
between several members of the TNF family a relationship. (Adapted from Shapiro L & Harris T
(CD40L, TNFa, and TNFf) and two members of the (2000) Curr. Opin. Biotechnol. 11, 31. With permission
C1q family (C1gA and AdipoQ, the latter labeled from Elsevier. Images courtesy of Protein Data Bank.)

ACRP30). Highly conserved residues (present in at



FIGURE 6.8 Structural classification of proteins using
the CATH database. The protein shown is hemopexin, a
protein rich in B-sheets with few a-helices. (Courtesy of
Christine Orengo.)
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FIGURE 6.9 The Russian doll effect. Four proteins are illustrated that
show continuous structural variation over fold space. Each of the proteins
shares at least 74 structurally equivalent residues with its nearest neighbor,
but the two extreme proteins show only 54 structurally equivalent residues
when compared directly. Key: 1cg2a, carboxypeptidase G2; 1tadC,
transducin-K; 1tph1, triose phosphate isomerase; 1rlr, ribonucleotide
reductase protein R1. (From Domingues FS, Koppensteiner WA & Sippl MJ
(2000) FEBS Lett. 476, 98. With permission from Elsevier. Images courtesy
of Protein Data Bank.)
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FIGURE 7.19 The protein complex network, and grouping

of connected complexes. Links were established between
complexes sharing at least one protein. For clarity, proteins
found in more than nine complexes were omitted. The graphs were
generated automatically by a relaxation algorithm that finds a local
minimum in the distribution of nodes by minimizing the distance

of connected nodes and maximizing the distance of unconnected
nodes. In the upper panel, cellular roles of the individual complexes
are color-coded: red, cell cycle; dark green, signaling; dark blue,
transcription, DNA maintenance, chromatin structure; pink,
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protein and RNA transport; orange, RNA metabolism; light green,
protein synthesis and turnover; brown, cell polarity and structure;
violet, intermediate and energy metabolism; light blue, membrane
biogenesis and traffic. The lower panel is an example of a complex
(TAP-C212) linked to two other complexes (TAP-C77 and TAP-C110)
by shared components. It illustrates the connection between the
protein and complex levels of organization. Red lines indicate
physical interactions as listed in the Yeast Proteome Database. (From
Gavin AC, Bésche M, Krause et al. (2002) Nature 415, 141. With
permission from Macmillan Publishers Ltd.)



FIGURE 9.5 Sensitive protein detection using the
RCA antibody chip. The chip is divided into 16 Teflon
wells, each containing an array of 256 antibodies

as probes. When a protein, represented by the blue
square, is captured by one of the probes, it can be
recognized using a second, biotinylated antibody (red),
which is subsequently detected by a tertiary universal
antibody connected to a circular oligonucleotide.

A strand-displacing DNA polymerase can use this
circular template, generating a long concatemer. (From
Kingsmore SF & Patel DD (2003) Curr. Opin. Biotechnol.
14, 74; With permission from Elsevier.)
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