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This book defines sets of orthogonal polynomials and derives a number
of properties satisfied by any such set. It continues by describing the
classical orthogonal polynomials and the additional properties they have.

The first chapter defines the orthogonality condition for two functions.
It then gives an iterative process to produce a set of polynomials which
are orthogonal to one another and then describes a number of properties
satisfied by any set of orthogonal polynomials. The classical orthogonal
polynomials arise when the weight function in the orthogonality condition
has a particular form. These polynomials have a further set of properties
and in particular satisfy a second order differential equation.

Each subsequent chapter investigates the properties of a particular
polynomial set starting from its differential equation.
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Preface

The Classical Orthogonal Polynomials have been studied extensively since
the first set, the Legendre Polynomials, were discovered by Legendre in
1784. They frequently arise in the mathematical treatment of model prob-
lems in the Physical Sciences, often arising as solutions of ordinary differ-
ential equations subject to certain conditions imposed by the model. We
shall not concern ourselves here with the physical applications. We shall be
concentrating solely on their mathematical properties. This monograph de-
rives a number of their basic properties together with some less well-known
results.

The first chapter provides a survey of some general properties satisfied
by any set of orthogonal polynomials. It starts by defining the inner product
of two functions f(z) and g(x) as the integral of the product of these two
functions multiplied by a non-negative weight function w(x) over an interval
(a,b), where a and b can be both finite, or one or both of infinite size. If
this integral is zero, the functions f(z) and g(x) are said to be orthogonal.
The functions we shall be considering are polynomials of arbitrary order.

The chapter continues by showing how for any given weight function we
can use the orthogonality condition to produce a unique polynomial set by
an iterative process and gives an example of this process. It shows that the
orthogonality condition leads to a number of properties satisfied by any set
of orthogonal polynomials. One of these is that members of any such set
of polynomials satisfies a three-term recurrence relation. It also indicates
that any set of polynomials satisfying such a recurrence relation forms an
orthogonal set.

The first chapter then describes the particular choices of weight func-
tions and domains which define the three classes of classical orthogonal
polynomials. A number of additional properties of these classical orthog-
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onal polynomials are then deduced. In particular it is shown that each of
the polynomials satisfies a second order differential equation.

Each subsequent chapter focusses on a particular orthogonal polynomial
set starting from the viewpoint of its differential equation. It shows that
solutions of this differential equation which satisfy certain conditions are
polynomials and that these polynomials form an orthogonal set. It then
describes in detail a number of the properties outlined in chapter 1 together
with further interesting properties.

A number of the polynomials have the Gamma Function I'(z) as part of
their definition. The Gamma Function is defined in the General Appendix
and the properties used in this monograph derived. The Beta Function
B(a,b) and the Hypergeometric Function o F (a, b; ¢; 2) are also defined and
the properties which are used in the earlier chapters described.

This monograph is an expanded version of a series of projects devised
for undergraduate mathematicians at Liverpool University.
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Chapter 1

Definitions and General
Properties

1.1 Introduction

The classical orthogonal polynomials arise in a number of practical situa-
tions and models. often as solutions to differential equations arising from
boundary value problems. We shall be collecting together and examining a
number of their properties without detailed reference to their applications.

In this chapter we look at the definition for a set of orthogonal polyno-
mials and describe a process for their generation and a number of their main
properties. We then specialise to the classical orthogonal polynomials and
deduce an additional number of general properties and show in particular
that they all satisfy a second order differential equation. It is this approach
from a differential equation which often arises in practical applications.

In later chapters we examine the properties of each of the individual
polynomial sets from a different viewpoint, starting from the differential
equation.

1.2 Definition of Orthogonality

The scalar or inner product of two functions f(x) and g(z) is defined by
the integral
b
/w(;r)f(.r)y(.-zf)d.r. (1.2.1)
where w(z) > 0, for a <& < b.

This is a generalisation of the idea of a scalar product of two finite di-
mensional vectors to an infinite dimensional “function space”. If this scalar



2 Classical Orthogonal Polynomials

product is zero, we say that the functions f(x) and g(z) are orthogonal.
Here we shall be looking at functions R,,(x) which are polynomials of order
n.

If these n th order polynomials R,, (1) satisfy the orthogonality relation

b
/ w(x) Ry () Ry, (x)da =0 for n # m, (1.2.2)

J
where w(z) is a weight function which is non-negative in the interval (a,b)
and is such that the integral is well-defined for all finite order polynomials
R, (x), these polynomials form a set of orthogonal polynomials. It is clear
that

b
/ w(x)[R,(x)]?dr = by, >0 (1.2.3)

Ja

since the integrand is everywhere > 0 for a < x < b.

1.3 Gram-Schmidt Orthogonalisation Procedure

For a given weight function w(x), this is an inductive procedure to generate
a set of orthogonal polynomials starting from the zeroth order polynomial
Ro(x) = 1. The procedure works by using the orthogonality condition to
determine the coefficients of the powers of z in the polynomial R, (%)
using all of the previously determined R, (), 0 < m < n.

The procedure consists of the following steps:
Set Ry(x) = 1.
Set Ry (x) = x+a; . The constant a| o is determined by the orthogonality
condition:

b b b
/ w(x) (@ + (1,1_())(1.1: =0 = / xw(x)de + ay g / w()de. (1.3.1)

Ja a a

Set Ro(r) = 2% + as 1 + azp. The constants as o and as; are determined
by the conditions that Ry () is orthogonal to Ry (x) and Ry(x) that is:

If the integral /f} rw(x)dr =0, then a; g = 0.

b
/ '11*(..1,')(.1:2 + a1 + (1.2‘0)(1;1' =0 (1.3.2)

(1

and

b
/ w(a) ((1,“) + l) (;1:2 + a0+ (1,2.())(1;1' =0, (1.3.3)



