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PREFACE

The primordial tumorigenic cell [...] is, according to my hypothesis, a cell that

harbours a specific faulty assembly of chromosomes as a consequence of an
abnormal event.

Theodore Boveri (1914)

Translated by Henry Harris

The factors responsible for fusions of broken ends or for the healing of a
broken end are not understood but are probably related to the method by
which the chromosome becomes broken and to the physiological conditions
surrounding the broken end.

Barbara McClintock (1941)

One of the most striking molecular aspects of cancers cells is their shock-
ing departure from the normal chromosome number and arrangement. DNA
replication is over 99% accurate, but the task of replicating six billion base
pairs of human DNA in every cell is still precarious, both in terms of simple
mutations and—more dangerously—in the creation of double-strand breaks
(DSBs) that must be repaired. This textbook explains how genome stability is
maintained.

In contrast to normal chromosomes (above left), chromosomes from tumor
cells (above right) exhibit dozens of alterations—truncations, translocations,
duplications, and amplifications of chromosome segments, as well as gains
and losses of whole chromosomes.

Cells have evolved two key processes to deal with broken chromosomes.
First, they have elaborated a variety of different mechanisms to repair these
breaks, most often using an intact sister chromatid or an homologous chromo-
some as the template to patch up the break. Much of this book will deal with
understanding in detail how these largely error-free repair mechanisms
function. These homologous recombination mechanisms are backed up by
other, less precise nonhomologous end-joining pathways that can join broken
ends together, with little regard for their origin. When the more accurate DNA
repair processes fail, these alternative mechanisms take over, creating the
rearrangements that we see in tumor cells. Repair of chromosome breaks is
enhanced by a second process, termed the DNA damage checkpoint, which
operates initially to prevent cells with chromosome breaks from entering
mitosis, thus providing more time for repair to take place. If this restraint fails,
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then a second aspect of the DNA damage checkpoint is to destroy cells with
unrepaired DNA damage by triggering apoptosis. Nearly all tumor cells have
lost their ability to repair DSBs by homologous recombination and/or have
lost the DNA damage checkpoint response.

Two exceptionally thoughtful books initially influenced my own thinking and
prompted my wish to contribute a more molecular perspective. The first is
H.L.K. Whitehouse's suggestive Towards an Understanding of the Mechanism of
Heredity (1969); the second is Frank Stahl’s inventive Genetic Recombination:
Thinking About It in Phage and Fungi (1979). Both of these books preceded the
explosion of molecular biological and genetic techniques that have made it
possible to dissect the mechanisms of DNA repair in great detail, most espe-
cially in bacteria and yeasts, but increasingly in metazoans. I have jokingly
said that this textbook is the sequel to Stahl's, but “thinking about it in fungi
and mice.” I have included a number of examples and concepts derived from
studies of bacterial recombination and a smaller number from the emerg-
ing world of Archaea, but the focus is on eukaryotic chromosomes and their
repair and recombination. Much of this textbook concentrates on chromo-
somal DSBs, the most dangerous type of DNA lesions. Some types of DNA
repair—nucleotide excision repair or base-excision repair—are mentioned
tangentially, but the focus is on repairing a completely broken chromosome.

This text is for advanced undergraduate and graduate students in molecu-
lar biology, genetics, and biochemistry. It is also intended as a reference for
researchers and practitioners, especially in cancer biology. In writing this text-
book I have assumed that the reader will have had some basic knowledge of
genetics and molecular biology, knowing roughly how DNA replication pro-
ceeds. Consequently, the book begins with the problem of re-starting DNA
replication at sites of damage or breakage (Chapter 1), as a way of introduc-
ing some of the basic mechanisms that are revisited in more detail in later
chapters. The focus is on homologous recombination, driven by RecA and
Rad51 recombination proteins, but Chapter 15 addresses nonhomologous
end-joining in its several guises. After an overview of the various DSB repair
mechanisms in Chapter 2, we begin with a review of the key recombination
proteins RecA and Rad51 and how they work (Chapter 3). Then we turn to how
DNA ends are processed to enable recombinase proteins to be loaded and to
begin the search for homologous sequences with which repair can be effected
(Chapter 4). Chapters 5 through 9 deal with different types of homologous
recombination to repair a broken chromosome: single-strand annealing,
mitotic gene conversion, and break-induced replication. A mixture of genetic
and molecular biological evidence is presented to support our current under-
standing of the molecular mechanisms that underlie these processes. But
homologous recombination is also a tool in modern genetics, so Chapters 10
and 11 examine gene targeting and site-specific recombination in detail. Only
then do we confront recombination as it was initially studied a century ago—in
meiosis (Chapters 12 and 13)—because meiotic recombination has elaborated
and differentiated the basic mechanisms of DSB repair to ensure the accurate
completion of generating recombined haploid germ cells from a diploid.

I have been forced to choose among many experiments to illustrate the
important concepts in the book and have not mentioned numerous critical
findings that led up to the selected experiments. Each of these experiments is
cited in the relevant figure legends and each chapter includes suggested read-
ing. Many other possible citations are absent, but they are available to the
reader in two ways. First, | have added as an Appendix to this book (available
online) a history of the evolution of molecular mechanisms of recombination,
which has about 250 references that give full credit to the brave pioneers who
launched the studies we continue today. Second, a combination of PubMed
and Google searches will quickly bring an interested student to the relevant
literature. Sprinkled throughout the book are brief boxes on nomenclature,
perspectives, and measurement. The book also contains over 300 images and
illustrations that, I hope, provide a way to visualize the processes that occur
inside the human cell, a world too small to see.



ONLINE RESOURCES FOR STUDENTS AND INSTRUCTORS

Accessible from www.garlandscience.com/genomestability, the Student and
Instructor Resource Websites provide learning and teaching tools created for
Genome Stability. This book presents molecular models of recombination based
on our present understanding, reflecting genetic, molecular biological, and bio-
chemical approaches. But these models slowly evolved from ideas that first
emerged soon after the discovery of the structure of DNA. Many clever ideas were
postulated by creative scientists whose fundamentally important contributions are
often overlooked as we focus on our present knowledge of these processes. An
historical account of the way that our present models of DSB-mediated recombi-
nation evolved is presented in an Appendix in PDF format entitled “Evolution of
Models of Homologous Recombination.” This Appendix is available on both the
Student and Instructor Resource Sites.

For Students: The Student Resource Site is open to everyone, and users have the
option to register in order to use book-marking and note-taking tools.

For Instructors: All of the images from the book are available in two convenient
formats: Microsoft PowerPoint® and JPEG. They have been optimized for display
on a computer. Figures are searchable by figure number, figure name, or by key-
words used in the figure legend from the book. The Instructor Resource Site
requires registration; and access is available to instructors who have assigned the
book to their course. To access the Instructor Resource Site, please contact your
local sales representative or e-mail science@garland.com. You can also access the
resources available for other Garland Science titles.
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