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PREFACE

INTRODUCTION

Mathematics is an integral part of the education of students in business, eco-
nomics, and the social sciences. There is increasingly a desire to improve the
level of quantitative sophistication possessed by graduates in these types of
programs. The objective is not to make mathematicians of these students, but to
make them as comfortable as possible in an environment which increasingly
makes use of quantitative analysis and the computer. Students are discovering
that they must integrate mathematics, statistical analysis, and the computer in
both required and elective courses within their programs. Furthermore, organi-
zations are becoming more effective users of quantitative tools and the com-
puter. Decision makers will be better equipped to operate within this type of
environment if they are familiar with the more commonly used types of quanti-
tative analyses and the technology of the computer. Such familiarity can assist
them in being better “critics’” and “users” of these tools, and hopefully, better
decision makers.

DESIGN OF BOOK

This is an applied finite mathematics book. The primary market for this book is
a one-term course for students in business, economics, and the social sciences.
The course is likely to be found in two-year and four-year schools and taken
during the freshman or sophomore years.

Specific features of the book include:

1 A style which carefully develops and reinforces topics.

2 An applied orientation which motivates students and provides a sense of
purpose for studying mathematics.

3 Annotated summaries of actual applications of selected mathematical tech-
niques.

4 An approach which first develops the mathematical concept and then rein-
forces with applications.

5 A design which incorporates and encourages the use of computers. Specific
features include: (2) the illustration of relevant software in selected chapters,
(b) annotated lists of software packages which are available commercially or
privately, and (c) specially identified exercises and minicases (see symbol at left)
which have computer requirements (the requirements typically involve writing
a short program or utilizing existing software packages).

6 Enriched “minicases,” at the end of 10 of the 11 chapters, which provide
challenging applications.

7 An optional, end-of-text appendix which provides a general review of key
algebra principles.



PREFACE

8 Notes to students which provide special insights.

9 ““Points for Thought and Discussion”” which allow students to pause for a
moment and reconsider a concept or example from a different perspective. Their
purpose is to reinforce and extend the student’s understanding.

10 A multitude of other learning aids, including over 250 solved examples,
over 1,200 exercises, chapter tests, chapter objectives, and summary lists of key
terms and concepts as well as important formulas.

11 An instructor’s manual which contains answers to all exercises and tests,
suggestions for different course structures, a bank of questions for constructing
quizzes and tests, and listings of some generic software which can be adapted
to different computer systems and used by instructors and their students.

OVERVIEW OF CHAPTERS

Chapter 1 Linear Equations

This chapter discusses the algebraic and graphical characteristics of linear equa-
tions. (Prerequisites: none.)

Chapter 2 Linear Functions: Applications

This chapter introduces the concept of mathematical functions. After a discus-
sion of general properties and characteristics of functions, the focus turns to
linear functions, their characteristics, and applications. The chapter ends with a
discussion of break-even analysis. (Prerequisites: Chapter 1.)

Chapter 3 Systems of Linear Equations

This chapter discusses systems of linear equations, graphical characteristics
(where appropriate), and algebraic methods for determining solution sets. The
Gaussian elimination method is the main technique presented for finding these
solution sets. (Prerequisites: Chapter 1.)

Chapter 4 Matrix Algebra
This chapter presents the concept of a matrix and the algebra of matrices. Aside
from discussing the basic matrix operations through the matrix inverse, the last

section of the chapter presents a good selection of applications. (Prerequisites:
Chapter 3.)

Chapter 5 Linear Programming: An Introduction

This is the first of three chapters which discuss linear programming and its
extensions. Instructors can cover this chapter only and provide their students
with a good overview of linear programming models and their, application. If
they desire a more in-depth treatment, Chapter 6, Chapter 7, or both can be
covered. Chapter 5 provides an overview of the general structure of linear pro-
gramming models, a good selection of applications, a discussion of graphical
solution methods, an overview of the simplex method, and a discussion of com-
puter solution methods. An annotated list of linear programming software is
provided at the end of the chapter. (Prerequisites: Chapter 3.)
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Chapter 6 The Simplex Method

This chapter is optional and presents details of the simplex method. Special
phenomena such as alternative optimal solutions, no feasible solution, and un-
bounded solutions are discussed, in terms of the simplex. The last section of the
chapter discusses the dual problem. (Prerequisites: Chapter 5.)

Chapter 7 Additional Applications and Extensions of

Linear Programming

This chapter is also optional. It is a chapter not usually found in finite mathe-
matics books. It is intended for the instructor who would like to take students
a bit farther in linear programming. Included in this chapter are discussions of
the transportation model, the assignment model, integer programming, and goal pro-
gramming. Any or all of these models can be covered. For each model, the gen-
eral form and assumptions are discussed. This is followed by sample applica-
tions and an overview of solution methods. Computer software packages are
illustrated for the transportation and assignment models, and an annotated
listing of available software packages for each of the four models is presented at
the end of the chapter. (Prerequisites: Chapter 5.)

Chapter 8 Introduction to Probability Theory

This is the first of three chapters which deal with probability and its applica-
tions. This chapter begins with a brief review of sets and set operations. This is
followed by a discussion of counting methods, culminating with permutations
and combinations. The remainder of the chapter presents basic probability con-
cepts and their application. (Prerequisites: none.)

Chapter 9 Probability Distributions

This chapter continues the discussion of probability by presenting probability
distributions. The chapter begins with a discussion of random variables, fre-
quency distributions, and probability distributions. This is followed by a dis-
cussion of measures of central tendency and measures of variability. The last
two sections present the binomial distribution and its application and the nor-
mal probability distribution and its application. (Prerequisites: Chapter 8.)

Chapter 10 Selected Applications
This last of three chapters dealing with probability focuses upon three areas of
application: Markov processes, decision theory, and game theory. Instructors may

choose to cover any or all of these three areas of application. (Prerequisites:
Chapter 9.)

Chapter 11 Mathematics of Finance

This chapter presents the basic methods of computation for compound interest.
Both the fixed payment and annuity situations are presented. A special section
presents computation methods for mortgages, and the last section of the chapter
discusses cost-benefit analysis. (Prerequisites: none.)

Appendix A A Review of Algebra (Optional)

This appendix is an optional review of selected topics in algebra. The topics
selected are those which are needed for study in this book as well as others
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which might be required for further courses. This appendix assumes some prior
background in algebra.
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EQUATIONS
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B Provide a thorough understanding of the algebraic and graphical character-
istics of linear equations

B Provide the tools which will allow one to determine the equation which repre-
sents a linear relationship

B lllustrate a variety of applications of linear equations
e e T s e B e e ]

In this text, one major area of study is that of linear mathematics. This chapter
is the first of seven chapters which focus upon linear mathematics and its appli-
cations. Linear mathematics is significant for a number of reasons:

1 Many of the real-world phenomena which we might be interested in repre-
senting mathematically either are linear or can be approximated reasonably well
using linear relationships. As a result, linear mathematics is widely applied.

2 The analysis of linear relationships is generally easier than that of nonlinear
relationships.

3 Some methods used in nonlinear mathematics are similar to, or extensions
of, those used in linear mathematics. Consequently, having a good understand-
ing of linear mathematics is prerequisite to the study of nonlinear mathematics.
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CHAPTER 1
CHARACTERISTICS OF LINEAR EQUATIONS

General Form
LINEAR EQUATION WITH TWO VARIABLES

A linear equation involving two variables x and y has the
standard form

ax + by = ¢ (1.1)

where a, b, and c_akré_real numbers and a and b cannot both

Notice that linear equations are first-degree equations. Each variable in the
equation is raised (implicitly) to the first power. The presence of terms having
exponents other than 1 (for example, x%) would exclude an equation from being
considered linear. The presence of terms involving a product of the two vari-
ables (for example, 2xy) would also exclude an equation from being considered
linear.

The following are all examples of linear equations involving two variables:

Eqg. (1.1) Parameters

a b c
2x + 5y = =5 2 5 -5
—x+3y=0 —1 3 0
x/3 =25 3 0 25
(Note: x/3 = %x)
2s —4t= -3 2 -4 -3

(Note: The names of the variables may be different from x and y.)
The following are examples of equations which are not linear. Can you ex-
plain why?
2x + 3xy — 4y =10

x+yP=6

Vi + Vo =-10

In attempting to identify the form of an equation (linear versus nonlinear),
an equation is linear if it can be written in the form of Eq. (1.1). A quick glance
at the equation
_5x -2y 2

2x 7

10

might lead to the false conclusion that it is not linear. However, multiplying
both sides of the equation by 4 and moving all variables to the left-hand side
yields 3x + 2y = 40, which is in the form of Eq. (1.1).

I e e e e e e N ]
LINEAR EQUATION WITH n VARIABLES

A linear equation involving n variables x,, x5, x5, . . . , x,has
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the general fqrm -

alqc; kX, F gk - A, = b 1.2)
where a,, a5, a3, . . . , @, and b are real numbers and not all
4y, 43,8y . .., dpe0ual zero,

e

Each of the following is an example of a linear equation:

3x; —2x, + 5x3=0
—x; + 3x, —4x3 + 5x4 — x5 + 2x4 = —80
5x; — X + 4x3 + x4 — 3x5 + xg — 3x; + 10xg — 12x4 + x40 = 1,250

We will spend much of our time in this book discussing equations and math-
ematical functions that involve two variables. Aside from the fact that the arith-
metic is a little easier, another important reason for concentrating on the
two-variable situation is that these functions can be graphed'to provide a visual
frame of reference. Equation (1.2), however, generalizes the definition of a
linear equation for those instances when we venture beyond two variables.

Representation Using Linear Equations

Given a linear equation having the form ax + by = ¢, the solution set for the
equation is the set of all ordered pairs (x, y) which satisfy the equation. Using
set notation the solution set S can be specified as

S = {(x, y)|lax + by = ¢} (1.3)

Verbally, this notation states that the solution set S consists of elements (x, y)
such that (the vertical line) the equation ax + by = c is satisfied. For any linear
equation, S consists of an infinite number of elements; that is, there are an infi-
nite number of pairs of values (x, y) which satisfy any linear equation involving two
variables.

To determine any pair of values which satisfy a linear equation, assume a
value for one of the variables, substitute this value into the equation, and solve
for the corresponding value of the other variable. This method assumes that
both variables are included in the equation (i.e., a # 0 and b # 0).

EXAMPLE 1

Given the equation
2x + 4y = 16

(a) Determine the pair of values which satisfies the equation when x = —2.
(b) Determine the pair of values which satisfies the equation when y = 0.

SOLUTION
(a) Substituting x = —2 into the equation, we have
2(—=2) +4y = 16
4y =20
and y=>5

When x = —2, the pair of values satisfying the equationisx = —2andy = 5, or (—2, 5).
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(b) Substituting y = 0 into the equation gives

2x + 4(0) = 16
2x =16
and x =8

When y = 0, the pair of values satisfying the equation is (8, 0).
EXAMPLE 2 [

Product Mix A company manufactures two different products. For the coming week 120
hours of labor are available for manufacturing the two products. Work-hours can be allo-
cated for production of either product. In addition, since both products generate a good
profit, management is interested in using all 120 hours during the week. Each unit pro-
duced of product A requires 3 hours of labor and each unit of product B requires 2.5
hours.

(a) Define an equation which states that total work-hours used for producing x units of
product A and y units of product B equal 120.

(b) How many units of product A can be produced if 30 units of product B are produced?
(c) If management decides to produce one product only, what is the maximum quantity
which can be produced of product A? The maximum of product B?

SOLUTION

(a) We can define our variables as follows:

x = number of units produced of product A
y = number of units produced of product B

The desired equation has the following structure.

Total hours used in producing products A and B = 120 (1.4)

What we need, then, is the expression for the left-hand side of the equation.
NOTE I S

You may well have a mental model for the left side of this
equation—it is simply a matter of recognizing its form and
stating it. Try it by asking yourself how many hours would be
used if you produced 1 unit of each product? 2 units of each?
10 units of product A and 20 of product B? If you are able to
answer these questions, you are using a mental model. Look
back at the definitions of x and y and state the model that al-
lows you to answer these questions.

As you reason through the structure of the left side of Eq. (1.4), the final equation might
evolve as follows:

Total hours used  total hours used
in producing + in producing = 120 (1.5)
product A product B

Since the total hours required to produce either product equals hours required per unit
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produced times number of units produced, Eq. (1.5) reduces to

3x + 2.5y = 120 (1.6)

Is that the answer you reached?
(b) If 30 units of product B are produced, then y = 30. Therefore

3x + 2.5(30) = 120
3x =45
x = 15 units

A pair of values satisfying Eq. (1.6) is (15, 30). In other words, one combination of the two
products which will fully utilize the 120 hours is 15 units of product A and 30 units of
product B.

(c) If management decides to manufacture product A only, no units of product B are pro-
duced, ory = 0. If y =0,

3x + 2.5(0) = 120
3x =120
x =40

Therefore 40 is the maximum number of units of product A which can be produced using
the 120 hours.
If management decides to manufacture product B only, x = 0 and

3(0) + 2.5y = 120
or y = 48 units

EXAMPLE 3 |

We stated earlier that there are an infinite number of pairs of values (x, y) which satisfy
any linear equation. In Example 2, are there any members of the solution set which
might not be realistic in terms of what the equation represents?

SOLUTION

In Example 2, x and y represent the number of units produced of the two products. Since
negative production is not possible, negative values of x and y are not meaningful. There
are negative values which satisfy Eq. (1.5). For instance, if y = 60, then

3x + 2.5(60) = 120
3x = —-30
x=-10
In addition to negative values, it is possible to have decimal or fractional values for x
and y. For example, if y = 40,
3x + 2.5(40) = 120
3x =20
x = 63
Given all the pairs of nonnegative values for x and y which satisfy Eq. (1.6), noninteger
values may not be meaningful given the nature of the products.



