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FOREWORD

The Cambridge Combinatorial Conference was held at Trinity College from 12
to 14 May 1977, under the auspices of the Department of Pure Mathematics and
Mathematical Statistics. Twenty two of the participants, many from abroad, were
invited to give talks. This volume consists of most of the papers they presented,
together with two additional articles which are closely connected with the themes
of the conference. The opportunity was taken, where necessary, to revise and
amend the papers, each of which has been thoroughly refereed. It is a pleasure to
acknowledge the rapid and efficient work of both referees and authors.

This volume is dedicated to Professor W.T. Tutte in acknowledgement of his
great contributions to graph theory and combinatorics. Professor Tutte had spent
two months in Cambridge, with the financial support of the Science Research
Council, and the date of the conference was arranged to coincide with his sixtieth
birthday. On Friday 13 May a celebration dinner was held in Trinity College.
Professor P.W. Duff, Regius Professor of Civil Law Emeritus, who was Professor
Tutte’s tutor while he was a student at Trinity, proposed a most memorable toast
which received an equally memorable reply.

Several of the papers were quickly and efficiently retyped by Mrs. J.E. Scutt.
The editorial burden was greatly relieved by the excellent work of Mr. A.G.
Thomason.

Béla Bollobas
Cambridge
3 August, 1977
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LINEAR SEPARATION OF DOMINATING SETS
IN GRAPHS*

C. BENZAKEN
Université Scientifique et Medicale de Grenoble, Mathématiques Appliquées et Informatique,
38041 Grenoble, France

P.L. HAMMER
University of Waterloo, Department of Combinatorics and Optimization, Waterloo, Ontario N2L
3G1, Canada

The class of finite undirected graphs G having the property that there exist real positive
numbers associated to their vertices so that a set of vertices is dominating if and only if the sum
of the corresponding weights exceeds a certain threshold 6 is characterized: (a) by forbidden
induced subgraphs; (b) by the linearity of a certain partial order on the vertices of G: (c) by the
global structure of G. The class properly includes that of threshold graphs and is properly
included in that of perfect graphs.

1. Introduction, notations, main results

We shall consider in this paper only finite, simple, loopless, undirected graphs
G =(V,E) (where V is the vertex set of G, and E is the edge set of G). The
terminology follows that in [1] or [5].

For any x € V, we shall denote by N(x) the set of vertices adjacent to x and by
M(x) the set of vertices of G not belonging to x U N(x) (for simplicity we shall
usually put x instead of {x}).

The edgeless graph on k vertices will be denoted by I,. The complete graph
with k vertices will be denoted by K,. The complement of the perfect matching of
2k vertices will be denoted by J,,. (Note that I,=K,=J,=0, I,=K,, ,=1,.)

Following Zykov’s terminology [8], for two graphs G,=(V,, E,) and G,=
(V,, E,), with V,NV,=§, we shall define their direct sum G,+ G, as being
(V,UV,, E,UE,) and their direct product G,xG, as being (V,UV,,
E,UE,UE,,), where E,, is the set of all edges linking points in V, to points in
Vs

A subset S of the vertex set V of a graph G is called a dominating set of G (in
abbreviation S dom G) if any vertex x€ S is adjacent to at least one vertex y e S.
A vertex v is called universal (or dominating) if {v} dom G. Every set containing a
dominating set is dominating.

A subset S of V is called an independent set of G when the induced subgraph
Gs is edgeless. Every subset of an independent set is independent.

*This research has been carried out at the University of Waterloo (December 1976) and completed
at the University of Grenoble (March 1977).
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A maximal independent set of G is a minimal dominating set of G. The
converse is generally not true. A domistable graph is a graph such that every
minimal dominating set is independent.

A domishold graph is a graph having the property that there exist positive real
numbers associated to their vertices so that S is dominating if and only if the sum
of the corresponding “weights™ of vertices of S exceeds a certain threshold 6.

Examples and counterexamples. Both I, and K, are domishold and domistable
graphs. Each weight is 1, and the thresholds 6 are n (for I,) and 1 (for K,,). For
p>1, the graph J,, is domishold (each weight is 1, and the threshold 6 is 2), but
not domistable.

Let H, = K, + K,, let H, be the simple path on 4 vertices, and let Hy= I, X I,
H,=(I,+K;)x 15, Hs= (I, + K,) X (I, + K,) (see Fig. 1). It is easy to notice that
none of the graphs in Fig. 1 are domishold.

N

1 H,
H, H, H,
Fig. 1.
Let us define now a binary relation 65 on the vertex set V of G, by putting
x8gy (x,ye V)iff
(Sdom G, x¢S,yeS)=> ((S\ y)Ux)dom G.

We shall say that ““x is at least as dominating as y”’, or that ““x can replace y”.
Lemma 1.1. 8, is a reflexive and transitive relation (i.e. a preorder).

Proof. The reflexivity is obvious. Assume i85j and sk (i, j, k —distinct), and let
S be a dominating set of G, containing k, but not i. If j£ S, then ((S\ k)Uj)dom G
(because jdsk) and does not contain i; therefore ((S\ k)U i) dom G because i can
replace j. If je§ then ((S\j)Ui)dom G, contains k but not j. So ((((S\j)U
D\ k)Uj)dom G, i.e. ((S\ k)Ui)dom G. In both cases idk.

The main results of this paper are the following:

Theorem 1.2. The following properties are equivalent:

(i) G is domishold.
(ii) The preorder &5 is linear.
(iii) G has no induced subgraph isomorphic to H,, H,, Hy, H, or H;s.
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(iv) G is built from the empty graph by the repeated application of G'— G"
where

G"=(G'+1,)xK,xI,, (p+q+r#0).

Corollaries. (a) Every induced subgraph of a domishold graph is domishold (be-
cause of (iii)).

(b) Every domishold graph is perfect (follows from [6] where it is proved that a
graph without any induced subgraphs isomorphic to H, is perfect).

Theorem 1.3. G is a domishold graph iff, the vertex set V of G can be partitioned
into three (possibly empty) subsets V,, V,, V5 (|V;| being even) inducing respec-
tively the graphs 1y, Ky, Jy, with the following properties:

Any vertex of V, is adjacent to any vertex of V.

For any i€ V,, N(i)N V5 induces the complement of a perfect matching J,, with
2k =|N(i)N V4.

The elements of V| can be indexed so that

N(i;))2N(i,)2---2 N(iy,).

The proofs of these results are given in Section 2.

Section 3 deals with connections between threshold and domishold graphs.
Consider an arbitrary threshold graph G, and let L be an arbitrary subset of
vertices, inducing a complete subgraph in G. A one to one correspondence is
established between the set of all pairs (G, L) (taken for all threshold graphs G
and all their complete subsets L) and the set of all domishold graphs.

Section 4 deals with Boolean aspects of the previously obtained results and with
algorithms for recognizing domishold graphs.

2. Proof of the main results

Proposition 2.1. If G is domishold, then 8 is a linear preorder.

Proof. Indeed, if G is domishold and qa; are the weights associated to its vertices,
then it is obvious that for any pair of vertices j, k one of the relations jésk (if
a; = a) or késj (if a, = a;) must hold.

A vertex m of G is called maximal if it is maximal with respect to
dg(mégi,Vie Vg).

Remarks. (1) Any dominating vertex is maximal.
(2) If a graph has a dominating vertex, then every maximal vertex is
dominating.

Lemma 2.2. Let G be a graph such that the corresponding preorder 8 is linear and
let m be a maximal vertex of it.
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If m is neither an isolated nor a dominating vertex then every pair {x, y} with
xe N(m), ye M(m) is a dominating set of G and every vertex ye M(m) is
dominating in Gy .

Proof. Let S be a maximal independent set of G not containing m (its existence
is guaranteed by the fact that m is not isolated). Thus S dom G. Let i be any
element of S. Since m& S and mdsi we must have (S\i)Um dom G; i is not
adjacent to any vertex of S\ i, hence it must be adjacent to m. So S< N(m).

Now, if {x, y} is such that x e N(m), y € M(m) then x is adjacent to y (otherwise
{x, y} is included in a maximal independent set of G not containing m and not
included in N(m)). This means that {x, y} dom G (every x'€ N(m) is adjacent to y,
every y'€ M(m) is adjacent to x and m is adjacent to x).

But m can replace x and {m, y} dom G. Hence every y' in M(m) is adjacent to
y, proving the Lemma.

Lemma 2.3. If 85 is linear, m is a maximal vertex of G and G,, the subgraph
induced by V'\ m, then the preorder 85 _is also linear.

Proof. Let i, je V\m and assume id5j. Let S be a dominating set of G,
containing j but not i. Assume first that m is isolated in G. Then SU m dom G
contains j but not i. Hence ((SUm)\ j)Uidom G and by deleting m, (S\ j)U
i dom G,, showing that id_j. If m is a dominating vertex of G then S dom G and
(S\j)Uidom G,, showing that id j. Finally let us consider the case where m is
neither isolated nor dominating. If i or j belongs to M(m) then i85 j (or j8, i)
because by Lemma 2.2 i(resp. j) is dominating and so maximal in G,,. If i and j
belong to N(m) then Sdom G and (S\j)Uidom G does not contain m so that
(S\j)Uidom G,,. Hence ié;_j.

Lemma 2.4. If 85 is linear, m is a nonisolated vertex of it, and i, j€ V\ m such that
ie M(m)NM(j), then m is not a maximal vertex of G.

Proof. Otherwise (by Lemma 2.2) ie M(m) must be dominating in Gy, ,,, which
is impossible since i is not adjacent to j (j# m).

Lemma 2.5. If 6 is linear, me V, i and j are adjacent vertices in M(m) and if
h, k, le N(m) are such that l e M(h) N M(k), then m is not a maximal vertex of G.

Proof. Assume m is maximal. Since it is neither isolated nor dominating, it
follows from Lemma 2.2 that {h, i} and {k, j} are dominating sets of G. However
{i,j} and {k, h} are not dominating (because me M(i)N M(j) and [e M(h)N
M(k)). Hence neither jdsh nor hdgj hold, in contradiction with the assumed
linearity of 8.

Proposition 2.6. A graph G having the property that the preorder ds is linear,
cannot have any induced subgraph isomorphic to H,, H,, H3, H, or Hs.
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Proof. Assume that G with linear preorder 8; has an induced subgraph H
isomorphic to an H, (t=1,...,5).

By removing a maximal vertex m€ H (if possible) and continuing this process as
many times as possible, we shall eventually arrive (by Lemma 2.3) to a graph G’
(with linear preorder) having a maximal vertex m in its induced subgraph H.

If t=1,2 or 3 then we can find two vertices n (# m) and p such that
pe M(m)N M(n). By Lemma 2.4, m is not maximal (a contradiction). If t=4 or 5
then H= (I, + K,) X H' (where H'=I5(t=4) or H'=1,+ K,(1=5)).

By the same argument as above mg K. Similarly, if H' = I, m¢ I;. So we may
suppose m =1,. Then K, < M(m) while H' is a subset of N(m). It follows now,
from Lemma 2.5, that m is not maximal. In any case, we have a contradiction.

Lemma 2.7. (Wolk [7].) If G is a connected graph without a dominating vertex,
then the complementary graph G contains an induced subgraph isomorphic to H, or
Hz-

Lemma 2.8. If G has no isolated or dominating vertex and no induced subgraph
isomorphic to H, (t=1,2,...,5) then its complement G has an isolated edge (i.e.
an edge which is not adjacent to any other edge).

Proof.' G has no dominating vertex. If G is connected then by Lemma 2.7, G
contains a subgraph isomorphic to H, or H, (a contradiction). If G is not
connected then every connected component has at least two vertices (G has no
dominating vertex). If one component has exactly two vertices the lemma is
proved. Otherwise each component contains a subgraph isomorphic to one of the
following

Hence, G contains a subgraph isomorphic to L, X L, where the L, (i=1, 2) are I;
or I+ K,. Thus G contains a subgraph isomorphic to H, (=3 or 4 or 5).

Lemma 2.9. If G is not empty and has no induced subgraph isomorphic to H,
(t=1,2,...,5) then G has one of the forms

G=G'+1,,
G=G'xXK,,
G=G'xJ,,
where G' has no induced subgraph isomorphic to any H, (t=1,...,5).

" The use of Wolk’s result in the present proof was recommended by Ch.Payan and has produced a
substantial simplification over our original proof.
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Proof. The decomposition follows from Lemma 2.8; the fact that G' has no
induced subgraph isomorphic to H, is obvious.

Proposition 2.10. If G has no induced subgraph isomorphic to H, (t=1,2,...,5)
then G is built from the empty graph by the repeated application of G' — G" where

G”z(G,J!’Ip)XKqXJZI Wlth p+q+l;é0

Proof. Obvious from the repeated application of Lemma 2.9, from the associativ-
ity and commutativity of + and X, and from the following relations:

L=L+I,+I1,+---+1, (ptimes),
K,=K;XK;XK;x---XK,; (qtimes),

]21=12X12x]2X"‘XJ2 (ltlmes)

Proposition 2.11. If G is built from the empty graph by the repeated application of
G'— G" defined abové then G is domishold.

Proof. The empty graph is obviously domishold. Assume now that G =
(G'+1,)X K, X ], and that G' is domishold. Let w, represent the weight of the
vertices [€ Vg, and w, the threshold for G'. Let w* =3min, w, We can always
assume that 2w* < w,, since otherwise G'= K,, and we could take all weights w,
(le Vi), as well as w,, equal to 1 (in which case again 2w™* < w,). Let us also put
W=1+Y,.v, w and let us define w,= w,+pW and

w; ie Vg,
. 4 iel,
W =
’ wo+ pW ieK,

wot+pW—w* iel,,

A A

The “weights” w; and the “‘threshold” w, of G characterize the dominating sets
of G. Indeed, any minimal dominating set D of G is of one of the following three
types: (i) D={k}, ke K,; (i) D={j, e}, with je J,, j#e and ecJ,, UL U Vg
(ii) D =D'U I, where D' is a minimal dominating set of G'.

Proof of Theorem 1.2. Follows from Propositions 2.1, 2.6, 2.10, 2.11.

Proof of Theorem 1.3. Necessity. From property (iv) of Theorem 1.2, we can
define G, G4, ..., G, with

Gy= (0 G =G
and

G =(Gi+ L)XK, xJ,, (i=0,1,...,t—1).
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Putting

Vl = U Ip, V2: U Kq.- V3= U ‘I2r.7

it is clear by induction that this partition has the desired properties.
Sufficiency. By induction. If G has the prescribed properties it is obvious that if
V. # 0 then iy, is either isolated (and after its elimination we get a graph G’ with
the same properties), or is adjacent to a vertex k in V, (k is dominating and its
elimination leads to a graph G’ with the same properties), or is adjacent to a
non-adjacent pair {j, j'} of V5 so that G=G’'xJ, with G’ having the same
properties.

If V, =0 then every ke V, (in case of V,# () is dominating and G,,_, has the
same properties.

If V,=¢ then G =1J,, is domishold.

3. Threshold and domishold graphs

We shall recall that, as in [2], by a threshold graph we shall mean a graph such
that real non negative numbers can be associated to its vertices so that two
vertices are adjacent iff the sum of their weights exceeds a certain threshold.
Alternatively, a graph is threshold iff there exist real numbers associated to its
vertices so that the sum of these numbers associated to vertices belonging to an
independent set (a dependent set) is<<(is=) than a certain threshold. Several
characterizations of such graphs can be found in [2].

We recall also that, as in [3], by a split graph we shall mean a graph whose
vertex set V can be partitioned in two (possibly empty) subsets V,, V, such that
V, induces Iy, and V, induces Ky,

Theorem 3.1. Every threshold graph is domishold and has all the following
properties:

(a) It has no induced square [I,x L,].
(b) It is split.

(¢) It is domistable.

(d) It is an interval graph.

Conversely a domishold graph having any one of the mentioned properties is
threshold.

Proof. It has been proved in [2] that a threshold graph is characterized by the
absence of induced subgraphs isomorphic to H;, H, and I,XI,. From this, it
follows that it has no subgraph isomorphic to H, (t=1,2,...,5). Hence it is
domishold and satisfies (a).

In [2] it is proved that a threshold graph is split (b). Moreover if i and j are two
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adjacent vertices of a threshold graph, we have:

NS N()Uj or N N(i)UI.
Therefore a minimal dominating set will never contain both i and j, and hence it is
independent, proving (c).

Finally it has been proved [2] that in a threshold graph (having split structure
V,UV,) one can index the elements of V| in such a way that N(i;)c N(i,) <
-+ +<2 N(iy,). Associate to each element i, € V, the interval [a, ] and to each
element k € V, the interval [m,, |V,|+ 1] where m, is the least integer such that
k € N(i,, ) (if any), and otherwise m, = |V |+ 1. It is easy to see that the corres-
ponding interval graph is isomorphic to the original one, proving (d).

Conversely a domishold graph without an induced square I, X I, (and of course
without H,, H,) is threshold. A split graph has no square and if it is domishold, it
is threshold.

If a graph G is domishold and domistable then a maximal vertex m (for &) is
either dominating or isolated. Otherwise by Lemma 2.2 any set {x, y} with
x € N(m), ye M(m) is minimal dominating (the minimality follows from the fact
that y is obviously not dominating, and neither is x, otherwise m should be
dominating). Hence by removing m, we get again a domistable and domishold
graph. By induction it follows that the original graph is threshold.

Finally if an interval graph is domishold then it does not contain a square.
Indeed assume there exists a square and [a, b], [c, d] are the corresponding
intervals associated to two opposite vertices of this square. We have [a, b]N
[c, d]=0. Obviously, the two intervals [e, f], [g, h] associated to the other two
vertices of the square must intersect both [a, b] and [c, d] and therefore intersect
each other (a contradiction).

Definition. Let i be a vertex of a graph G. The i-duplication of G is the graph G’
obtained by adding a new vertex i’ to Vs with N(i")= N(i). Conversely, we shall
say that G is the (i, i')-fusion of G'.

We can extend this definition to W-duplication of G (W < V) by duplicating
sequentially each vertex of W (this operation does not depend on the order of
duplications).

Also if U< Vg, induces the complement of a perfect matching (J),) and if
every pair (i,i’) of non adjacent vertices in U have the same neighbourhood
(N(i)= N(i")), by the U-fusion of G, we mean the graph obtained by the
sequential repetition of all the (i, i')-fusions of G.

Theorem 3.2. If G is a domsihold graph and S a maximal subset of Vs inducing a
subgraph Jg then the S-fusion of G is threshold.

Conversely if G is threshold and L a subset of a maximal subset of V inducing a
clique of G then the L-duplication of G is a domishold graph.
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Proof. A direct consequence of Theorem 1.3.

Remark. Despite the fact that the class of domishold graphs includes properly
that one of threshold graphs, this theorem seems to point to a (to us) surprising
similarity between threshold and domishold graphs.

4. Boolean aspects and algorithms

4.1. Recognizing domishold graphs

It is easy now to construct a procedure for the recognition of domishold graphs;
the time needed by this procedure will be polynomial in the number n of vertices.
The procedure can start by searching for isolated vertices and eliminating them.
When no more isolated vertices can be found, the procedure could search for
dominating vertices. After repeating the above two steps as many times as
possible we shall obtain a graph without isolated or dominating vertices; in this
graph we shall look for two non-adjacent vertices, both of which are linked to
every other vertex. The graph is domishold if and only if the above three steps can
be repeated until the total exhaustion of the vertex set.

4.2. Recognizing the linear separator of a domishold graph

A linear inequality

n
Z wiX; = w,, x;€{0, 1} (i=1,...,n)
i=1
is called domigraphic if there exists a domishold graph of n vertices such that the
w;’s are the weights of the vertices, and w, is the threshold. In other words, the
inequality holds if and only if (x,...,x,) is the characteristic vector of a
dominating set. We can obviously assume that w,=---=w,.
The condition

o=

WiBWO
1

I

i
is obviously necessary for a linear inequality to be domigraphic. In the case n =1,

it is sufficient too. For n =2, this condition along with (w, <w,) = (w,; <w,) are
again sufficient.

Theorem 4.1. The inequality Y, wx; = w, (n=3) is domigraphic if and only if
one of the following conditions hold:

(i) w,=wy and Y, wx; = w, is domigraphic;
(i) wy<wg, i, w;<w, and Y-, wx; = w,— w, is domigraphic;
(i) wy<wg, wot+w,=w, and Y13 wx; = w, is domigraphic.



