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Asymptotic Expansion of the Krawtchouk Polynomials
and their Zeros

Wei-Yuan Qiu and Roderick Wong

(Communicated by Lawrence Zalcman)

Abstract. Let K (z;p,q) be the Krawtchouk polynomials and g = N/n.
An asymptotic expansion is derived for K~ (z;p,q), when z is a fixed num-
ber. This expansion holds uniformly for g in [1,00), and is given in terms of
the confluent hypergeometric functions. Asymptotic approximations are also
obtained for the zeros of K ,’:’ (z;p, q) in various cases depending on the values
of p,q and p.

Keywords. Krawtchouk polynomials, asymptotic expansions, confluent hy-
pergeometric functions, zeros.

2000 MSC. 33C45, 41A60.

1. Introduction

Let p>0,¢>0and p+¢g =1, and let N be a positive integer. By the binomial
expansion, we have

(1.1) (1—pw)¥*(1 4 qu)* = Z K (z;p, q)w",
n=0
where
(1.2) KY(x;p,q) = Z (N - I) ("L‘) (—p)"*¢*
' mee = n—k)\k )

It is clear that KN (z) = KY(z;p,q) is a polynomial in z of degree n. The
polynomials { KN (z)}2_, are known as the Krawtchouk polynomials, and they

Received February 16, 2004.

The research of the first author is partially supported by Liu Bie Ju Center for Mathematics
Sciences and by Chinese NNSF grant No. 10271031. The research of the second author is
partially supported by grants from the Research Grant Council of Hong Kong.
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form an orthogonal system on the discrete set {0.1,2,.... N} with the weights
N\ . now 2
(1.3) plo) = ( )p" N, z=0,1,...,N.
b7 4

It is well known that the Krawtchouk polynomials are related to the Hamming as-
sociation scheme in coding theory (see. e.g. [5. 13, 15, 21]). and Lloyd’s Theorem
(12, 15] states that the existence of a perfect code in the Hamming metric corre-
sponds to the Krawtchouk polynomials having integer zeros. Recently, there has
been considerable interest in the asymptotics of Krawtchouk polynomials, when
the degree n grows to infinity. For instance, in [20]. Sharapudinov obtained the
asymptotic formula

(2N pgrn!)2(Npq) ™2 p(z)e”/? KN (&)

= @2 2ml) V2 H,, (2) + O(nTAN V),
where & = Np+ (2Npq)'2x, n = O(N'3), 2 = O(n'/?). and H,(x) is the Her-
wite polynomial. Furthermore, if the zeros of KN () are arranged in decreasing
order: {n > Ton > ... > I,n. then he has shown that
(1.5) Fan = Np[l — (2¢/Np)'%z,(n)] + O(n™")

uniformly with respect to 1 < n < gyNY', N = 1.2,.... where {gy} is a
sequence of positive numbers tending to zero as N — oc and @ (n) is the smallest
zero of the Hermite polynomial. Also, Dragnev and Saff [6. 7] have given the

distribution of the zeros of Krawtchouk polynomials.

(1.4)

In [9]. Ismail and Simeonov have investigated the asymptotic behavior of K (nt)
as n — oc, when N/n = ~ is a fixed constant independent of n. They divided the
t-interval 0 < ¢t < 7 into several subintervals. and gave an asymptotic formula for
K (nt) in each of the subintervals by using the classical saddle point method [22].
Their formulae hold uniformly on compact subsets of each subinterval. but are
not valid for x = nt in any bounded interval in [0, +o¢) since in this case ¢ has
to tend to zero as n — oo. When v > 1/p, they have also proved that the zeros
of KN (nt) are in the interval

(1.6) (m —p+q—vpey —1). py —p+avpa(y — 1)) :

More accurate bounds for the zeros have been given by Krasikov [10].

Recently. Li and Wong [14] have studied the uniform asymptotic behavior of
KN (x) in the interval 0 < 2 < N, as n — oc. With g = n/N and z = AN,
they have derived an infinite asymptotic expansion for KY(AN) as n — oc.
which holds uniformly for g and A in any compact subinterval of (0,1). For
fixed p. their result covers the various asymptotic approximations given by Ismail
and Simeonov [9]. Another treatment of uniform asymptotics of K () with
scaled variable & = nt can be found in Baik. Kriecherbauer. McLaughlin and
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Miller [3], where a steepest descent method for a Riemann-Hilbert problem is
used. However, the results in both [9] and [3] are not valid for fixed or bounded .

The purpose of this paper is to present an asymptotic expansion for K (z) with
fixed or bounded x, which is uniformly valid for n/N in (0, 1]. This expansion is
given in terms of the confluent hypergeometric functions. To state the result more
precisely, we let = N/n. When n — oc, we have the asymptotic expansion

Krllv (.’I:) ~ (_ 1)n+1pnfz€—n7

& A
N(-n(p—1),z —n(p—1)+1,nn) k
(1.7) (=nl ) ( ; (nn)k
+ N (—n(p—1),2 —n(p—1)+1,nn) Z(_])k(b_k)k
n

k=0
which holds uniformly for 1 < g < oo and for z in any bounded subinter-
val of [0,00), where N denotes the confluent hypergeometric function given in
[18, p. 255], v and 7 are analytic functions of g given in Section 3 below, and ay
and by can be calculated recursively; see (4.16)(4.18).

Asymptotic approximations are also obtained for the zeros of Krawtchouk poly-
nomials K (z;p,q) in various cases depending on the values of p, ¢ and p.
Let x, x denote the k-th zero of K*(x), k =0,1,2,...,n—1, counted in increas-
ing order

0< Tpo < Tpg < oo < Tpp-1 < N.

As n — oo we have

(i) if n( — l/p)2 — oo and p > 1/p then each z,,, tends to infinity,
(i) if n(pp—1/p)? = oo and p < 1/p then z, 4 equals k up to an exponentially
small error;
(iii) if n(p — 1/;0)2 is bounded then z,, can be expressed in terms of the k-th
zero of the parabolic cylinder function given in (4.29) below.

The precise statement of the result is given in Theorem 2 at the end of the paper.

2. The steepest descent method

By Cauchy’s formula, we have from (1.1)

dw

1
21) KN @) = g [ (0= pw)¥ (1 quy 2

21
where (' is a small, positively oriented, closed contour Surrounding w = 0.
Changing the variable in (2.1) to t = 1/(1 — pw) we have

(2.2 K=o [ S

2l Jor tN-F1(t — 1)nt]
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where C” is a circle surrounding ¢ = 1. oriented in the negative direction and
with a radius less than 1.

If we set t = N/n, then | < p < +oc and (2.2) can be written in the form

. e n+lp"_w (t_q)m —nf () 1t
(2.3) K*(z) = (1) o -[(V = 1)( dt,
where the phase function f(f. ) is given by
(2.4) f(t.p) =log(l —t)+ (1 — 1) logt.

When g > 1, the function f(f. ) has two branch points ¢t = 0 and ¢ = 1. This
function is analytic and single-valued in the t-plane with cuts along the intervals
(—oc, 0] and [1, oc). For all logarithmic functions in (2.4), we choose the principal
branch
log( = log |C| +iarg(. —m<arg( < .

For later discussion. we also need to specify the values of the argument along the
upper and lower edges of the cuts. If t* = u +i0*, u < 0. denote points on the
upper and lower edges of the cut along (—o¢. 0] respectively, then we choose

(2.5) argt”™ =, argt™ = —m;

if t* = wu+i0*, u > 1. are points on the upper and lower edges of the cut along
[1.0c) respectively, we choose

(2.6) arg(l —t*) = —m, arg(l —t7) =m.

When p = 1. the function f(t.p) has only one branch point t = 1. By choosing

the principal value of the logarithmic function indicated above, f(t, jt) is analytic
in the cut plane C\ [1, ).

The amplitude function in the integral in (2.3) also has a branch point t = ¢
when z is not an integer. For definiteness of (f — ¢)*. we choose a cut along
(—oc.q] in the t-plane and take the branch of (t — ¢)* in the cut plane so that
(t — q)* is real when t > ¢. Thus, if t* = u +i0*, u < q. are points along the
upper and lower edges of the cut along (—oc. g|. then

(2.7) arg(t' —q)" = tme.
The derivative of f(t. u) with respect to t is given by
. pt — (e —1)
2.8 g ) = =2 "%
(2.8) f(tp) 1)

For 1 < p1 < +0c, the function f(t. p) has a saddle point at tg = (up—1)/p. This
saddle point lies in 0 < #; < 1, and approaches 0. as ¢ — 1, which is one of
the branch points of f(¢. ). Note that the saddle point will disappear when p
reaches 1: L.e. so the function f(¢. p) has no saddle point for p = 1.

At the saddle point 5. we have

(2.9) flto.p) = (— 1) log(p — 1) — plog e,
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and

3
(2.10) f(to, ) = i < 0.

If z is not an integer, there is also a cut along (—o0, ¢] for the amplitude function.
When ty < ¢, or equivalently p < 1/p, we let t§ and #; denote the point ¢, on the
upper and lower edges of the cut respectively. By taking branches as in (2.5), (2.6)
and (2.7), we have
ftg 1) = f(tg, 1)

but

(ty — )" = (tg — @)* = (g —to)"e"™.
The relevant path of steepest descent L for the integral (2.3) is given by

(2.11) Im(f(t, n) — f(to, p)) = arg(l —t) + (u — 1) argt =0
and
(2.12) Re(f(t, 1) — f(to, 1)) = 0.

It is obvious that the path of steepest descent L is symmetric with respect to the
real axis. Note that points in the interval (0,1) on the real axis satisfy (2.11),
but do not satisfy (2.12). Indeed, we have Re(f(t, u) — f(to, pt)) = —occ ast — 0
and t — 1. Hence, the path of steepest descent L must be the path through ¢,
perpendicular to the real axis at t;, and going to infinity; see Figure 1. If we
set t = u + v, v > 0, then the half branch L, of L in the upper half plane is
described by the equation

1—u

(2.13) — arccot + (pu — 1) arccot Yoo
v

-
The integration contour C’ in (2.3) can be deformed into the oriented curve I’
shown in Figure 1. When p > 1/p, i.e. tp > ¢, I' is exactly the path of steepest
descent L. When 1 < p < 1/p, i.e. 0 < tp < g, ' consists of the lower half
branch L_ of L, the lower edge £_ from t; to g and the upper edge £, from g to t;
of the cut along (—o0, |, and the upper half branch L, of L; see Figure 1 (b).
When g = 1, T consists of the lower and upper edges of the cut along (—o0, ¢,
with two small semicircular indentations near 0, since () is a simple pole of the
integrand in (2.3); see Figure 1 (c).

The integral (2.3) can now be written as

(2.14) K (x) = (=)™ p"*1(n, p; ),
where

e U 1 (t" Q)° —nf(t,u)
(2.15) I{n, w2) = 5 /[ i 1)8 dt.

We need consider only the integral I(n, y; ).
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A /
| /
.
| L
0 9\l 0%71 I
N\
\\ L-
I=LtE++L,
=L
(a) b/

(c)

FIGURE 1. Path of steepest descent I': (a) to > ¢; (b) to < ¢
((‘) ty = 0.

3. Relation to confluent hypergeometric functions

To obtain the asymptotic expansion of the integral (2.15) for bounded x € [0. +o¢)
which holds uniformly for 1 < p < oc. we should compare (2.15) with a well-
known special function. Note that the function f(¢.p) in (2.15) has a saddle
point at t;. This saddle point moves close to ¢ = ¢. the branch point of the
amplitude function, when p gets close to 1/p; it moves close to t = 0, the loga-
rithmic singularity of f(f, ). when p gets close to 1. To find a function having
the same properties as f(t. ). we introduce the function

1 (1+)
N((l,(': 3) =t 2_ Sa —l(s o 1)(.'—(171(,:.* (1'.5'
)
(3.1) -
1 (1+)

— (.‘w‘ o l)r'fafl(jszr(u— 1) logs ds.

Comi ) o
where the integration path begins at —oc. encircles the point ¢ = 1 once in the
positive direction, and then returns to —oo: see Figure 2. The cut in the s-plane
is taken along (—nc. 1]. and we take the principal branches for the functions s~
and (s — 1) ! in the cut planc.



