FUNDAMENTALS of SOLAR CELLS

Photovoltaic Solar Energy Conversion

(1)

ALAN L. FAHRENBRUCH RICHARD H. BUBE

FUNDAMENTALS OF SOLAR CELLS

Photovoltaic Solar Energy Conversion

Alan L. Fahrenbruch Richard H. Bube

Department of Materials Science and Engineering Stanford University Stanford, California

ACADEMIC PRESS

A Subsidiary of Harcourt Brace Jovanovich, Publishers

New York London

Paris San Diego San Francisco São Paulo Sydney Tokyo Toronto

COPYRIGHT © 1983, BY ACADEMIC PRESS, INC. ALL RIGHTS RESERVED.

NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC.
111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NW1 7DX

Library of Congress Cataloging in Publication Data

Fahrenbruch, Alan.

Fundamentals of solar cells.

Includes index.

1. Solar cells. I. Bube, Richard H., Date II. Title.

TK2960.F33 1983 621.31'244 82-1391

ISBN 0-12-247680-8

PRINTED IN THE UNITED STATES OF AMERICA

83 84 85 86 9 8 7 6 5 4 3 2 1

FUNDAMENTALS of SOLAR CELLS

Photovoltaic. Solar Energy Conversion

ALAN L. FAHRENBRUCH RICHARD H. BUBE

FUNDAMENTALS OF SOLAR CELLS

Photovoltaic Solar Energy Conversion

此为试读,需要完整PDF请访问: www.ertongbook.com

To Phyllis, and to my parents, John and Lillian

ALF

The heavens are telling the glory of God; and the firmament proclaims His handiwork. . . . In [the heavens] He has set a tent for the sun Its rising is from the end of the heavens . . . and there is nothing hid from its heat. Psalm 19:1,4,6

RHB

to woll add lens not make the property of the

In the 1960s and 1970s there was a significant change in people's concept of the earth. An awareness developed that the fossil energy resources, which we all had come to take for granted, were not inexhaustible. New, and preferably renewable, energy resources had to be found. It is probable that a combination of sources will fill this need, including coal, solar-thermal, solar-photovoltaic, wind, nuclear, ocean-thermal, biomass, and others. It is our hope that this book will aid the expansion of solar photovoltaics from relatively small and specialized use to a large-scale contribution to our energy supply.

This book is intended for upper-level graduate students who have a reasonably good understanding of solid state physics and for scientists and engineers involved in research and development of solar cells. It is the outcome of a course taught by one of the authors (ALF) beginning in 1977 at Stanford University. The field of photovoltaics is changing rapidly, and the increasing interest of the scientific, engineering, and business communities has produced an avalanche of literature that attempts to keep up with the state of art. We could not hope to aim at such a moving target in a book of this kind, and fortunately it is not our purpose to do so. This book focuses instead on the fundamental physical principles of solar cells rather than on the details of particular devices. Specific devices are introduced principally as examples of basic phenomena and to illustrate the possibilities for innovative design. Although a solar cell is conceptually simple, it requires the application of many disciplines to produce efficient and economical devices. It is relatively easy to make a solar cell

xii

with less than 5% efficiency from a variety of materials. Indeed, the photovoltaic response of a cell based on spinach has been measured.† But to increase the solar efficiency figure to 10-20% requires great understanding and care.

The book begins with a procedure like that used by children who are confronted with clocks and other mysterious mechanisms: the cell is taken apart to expose the fundamental processes taking place. Then each of the basic aspects of its nature is explored in the most intuitive way possible. We begin this examination in Chapter 2 with the solar input. In Chapter 3 semiconductor basics, optical absorption and recombination, drift, and diffusion of carriers are reviewed both to establish a common language and for a convenient resource. Recombination and the flow of photogenerated carriers are related through the transport equation in Chapter 4, enabling us to calculate the total light-generated current and the spectral response. Charge separation and the characteristics of junction barriers are examined in detail in Chapter 5. In Chapter 6 the cell is "reassembled," the overall solar efficiency is calculated, series and parallel resistance losses are considered, and these are related to the semiconductor properties of the materials involved.

Chapters 7, 8, and 10 are devoted to examples of specific solar cell devices where the practicalities of fabrication are faced and the potential for innovative modification is introduced. We consider a single-crystal homojunction (Si), a single-crystal-heterojunction/buried-homojunction (AlGaAs/GaAs), and a polycrystalline, thin-film cell (Cu_xS/CdS). Chapter 9 describes the complexities that the use of thin-film polycrystalline material brings to the design of solar cells, including the modification of transport and recombination by grain boundary potential barriers. The book concludes with discussions of concentrator devices and systems and of photoelectrochemical cells.

The last parts of Chapters 5 and 10 relate to two areas that might be considered to be more in the realm of pure science: heterojunction interfaces and single-crystal Cu_xS/CdS cells. However, this background is essential for experimentalists dealing with cells that involve active interfaces and cells in which photoactive impurity energy levels are important. In addition, these complexities exist in all cells, even if only of second order in magnitude.

Finally we should like to express our appreciation to the people who reviewed particular chapters: Chapters 1 and 6, Dr. Kim W. Mitchell; Chapter 2, Dr. Arlon J. Hunt; Chapter 3, Dr. Julio Aranovich; Chapter 5, Dr. A. Rose; Chapter 7 and the concentrator section of Chapter 12, Pro-

[†] New York Times, July 31, 1979.

fessor Richard Swanson; Chapter 8, Professor G. R. Pearson; Chapter 9, Dr. Lewis Fraas; Chapter 10, Professor Allen Rothwarf and Dr. William Haines; Chapter 11, Professor Sigurd Wagner; and Chapter 12 (the section on PEC cells), Dr. Bruce Parkinson.

In addition, we wish to thank all the graduate students who gave valuable feedback and caught many errors in the manuscript, especially Chris Eberspacher. Finally we wish to give credit to NSF-RANN, ERDA, and the Department of Energy for financial support for a portion of the research discussed here.

LIST OF SYMBOLS

A	Ideality factor in diode equa- tions	$E_{\rm A}$, $E_{\rm D}$	Acceptor- and donor-level energies (eV)
A*	Richardson constant modified by the effective mass	E_c	Energy of conduction band edge (eV)
	$[=120(m^*/m_0)]$ (A cm ⁻²	$E_{ m F}$	Fermi-level energy (eV)
4 4 4	°K ⁻²)	$E_{\mathrm{F}n}$, $E_{\mathrm{F}p}$	Quasi-Fermi-level energies for
A^{**}	Richardson constant modified		electrons and holes
	by tunneling, image forces,	$E_{ m g}$	Band-gap energy (eV)
	etc.	$E_{\rm i}$	Intrinsic-level energy (eV)
A_0	Avogadro's number $[=6.023 \times 10^{23}]$ (mole ⁻¹)	$E_{ m r}$	Recombination-level energy (eV)
$\mathcal{A}_{A}, \mathcal{A}_{D}$	Active illuminated area and total junction diode area	$E_{ m v}$	Energy of valence band edge (eV)
а	Lattice constant (Å)	E_{0}, E_{00}	Characteristic energies for
B	Constant	/	thermionic-field emission
В	Magnetic induction (G)		junction transport (eV)
C	Capacitance (F)		[Section 5.5.6]
C	Solar concentration ratio	E	Electric field (V cm ⁻¹)
D	Atomic diffusion coefficient (cm ² sec ⁻¹)	\mathcal{F}	Faraday constant [= 96486 C g-equiv ⁻¹]
$D.D_n,D_p$	Diffusion coefficients: general,	f	Fermi function
	for electrons, and for holes,	ff	Fill factor
	respectively (cm ² sec ⁻¹)	G	Generation rate (cm ⁻³
E	Energy (usually in eV)†		sec ⁻¹)

In this book energies (e.g., $E_{\rm F}$, $E_{\rm i}$, $E_{\rm c}$) are given with respect to an arbitrary reference. Energy differences are denoted explicitly, i.e., $(E_{\rm c}-E_{\rm F})$, or by $\triangle E$, $E_{\rm g}$, δ , $E_{\rm 0}$, and $E_{\rm 00}$.

g	Collection function, bulk (see Section 6.3.1)	$N_{\rm A}$, $N_{\rm D}$	Density of acceptors and donors (cm ⁻³)
Н	Collection function, total	$N_{\rm c}$, $N_{\rm v}$	Effective density of states in
h	Collection function, interfacial	1 V C , 1 V V	the conduction and valence
h	Planck's constant		bands (cm ⁻³)
"	$\hbar = h/2\pi = 1.053 \times$	$N_{ m gb}$	Density of grain boundary
	$10^{-34} \text{ J sec} = 0.66 \times$	1 vgb	states (cm ⁻²)
	10 ⁻¹⁵ eV sec]	$N_{ m I}$	Density of imperfection cen-
I	Current (A)	1	ters (cm ⁻³)
$I_{ m sc}$	Short-circuit current (A)	N_{I}^{*}	Density of imperfection cen-
J	Current density (A cm ⁻²)	7	ters available for capture of
$J_{ m L}$, $J_{ m L}$, $J_{ m L}$, $J_{ m L}$,	Light-generated current den-		minority carriers (cm ⁻³)
E 7- ER 7- EP	sity: total, for electrons,	$N_{ m i}$	Density of interface states
	and for holes, respectively		(cm^{-2})
	$(A cm^{-2})$	$N_{\rm r}$	Density of recombination cen-
J_{m}	Current density at maximum-		ters (cm ⁻³)
· m	power point (A cm ⁻²)	$N_{ m ss}$	Density of interface states
J_n, J_p	Electron and hole current		$(c\bar{m}^{-2} eV^{-1})$
	density (A cm ⁻²)	n	Electron density (cm ⁻³)
$J_{ m sc}$	Short-circuit current density	n_i	Intrinsic carrier density (cm ⁻³)
	(A cm ⁻²)	n_n, n_p	Nonequilibrium carrier den-
J_0	Preexponential factor in diode		sity of electrons in n-type
	equation (A cm ⁻²)		and p-type materials
J_{00}	Preexponential factor for J_0	n_{n0}, n_{p0}	Equilibrium carrier density of
	$[e.g., J_0 =$		electrons in n- and p-type
	$J_{00} \exp(-\triangle E/kT)$		materials
$K_0, K_{\rm L}$	Radiation damage coefficients	$n_{\rm r}$	Index of refraction
	[Section 7.5.1]	P	Power density (W cm ⁻²)
${\mathcal H}$	Thermal conductivity (W cm ⁻¹	P_{m}	Power density at the maxi-
	°C-1)	D	mum-power point (W cm ⁻²)
k	Boltzmann constant [= 1.38 ×	$P_{\rm s}$	Total solar input power (W
	$10^{-23} \text{ J} \circ \text{K}^{-1} = 0.864 \times 10^{-13}$		cm ⁻²)
· 100 - 1 - 11	10 ⁻⁴ eV °K ⁻¹]	p	Hole density (cm ⁻³)
k_0	Distribution coefficient	p_p,p_n	Nonequilibrium hole densities
L, L_n, L_p	Diffusion length: general, for		in p - and n -type materials
	electrons, and for holes, re-	140	(cm ⁻³)
	spectively (cm)	p_{p0},p_{n0}	Thermal equilibrium hole densities in p- and n-type ma-
$L_{ m dr}$	Drift length $[= \mu \mathcal{E} \tau]$ (cm) [Eq.		terials (cm ⁻³)
or or	(11.1)] Loss fraction for series and	O maidline	Charge density (C cm ⁻² or C
$\mathscr{Z}_{\mathrm{s}},\!\mathscr{Z}_{\mathrm{p}}$	parallel resistance	Q	cm ⁻³)
ln.	Natural logarithm	Q_1	Insulator bulk charge (C cm ⁻³)
ln M	Atomic mass	$Q_{\rm ss}$	Interface or surface state
$m_{\mathrm{e}}^*, m_{\mathrm{h}}^*$	Effective masses of electrons	∠ss ,	charge (C cm ⁻²)
m _e ,m _h	and holes	a	Electron charge $[= q =$
m	Optical air-mass number	q	$1.6 \times 10^{-19} \mathrm{C}$
$m_{ m r} \ m_{ m t}^*$	Tunneling effective mass	R	Reflectance
m_0	Rest mass of electron	R	Resistance (Ω)
beaA	$[=9.11 \times 10^{-31} \text{ kg}]$	$R_{\rm s}$, $R_{\rm p}$, $R_{\rm c}$	Series, parallel (shunt), and
N	Number density (cm ⁻³)	s 1- 1p 1-10	contact resistance (Ω)

S	Index of interface behavior [Section 5.7.2]	α	Optical absorption coefficient (cm ⁻¹)
S,S_i	Surface and interfacial recombination velocities (cm	α	Tunneling exponential factor (V^{-1})
	sec^{-1})	$lpha_\Sigma$	Minimum angle subtended by
$S_{ m gb}$	Grain boundary recombination velocity (cm sec ⁻¹)		sun at earth's radius [= 0.533°]
T	Temperature (°C or °K)	β	Recombination coefficient
\mathcal{T}	Tunneling coefficient		$(cm^3 sec^{-1})$
t	Time (sec)	r min	Photon flux (photons cm ⁻²
t VIII	Layer thickness (cm)		sec^{-1})
U	Bulk recombination rate (cm ⁻³ sec ⁻¹)	Γ_0	Photon flux incident on front surface of solar cell (cm ⁻²
$U_{ m gb}$	Grain boundary recombination		sec ⁻¹)
	rate $(cm^{-2} sec^{-1})$	γ	Grain size (cm)
V	Voltage (V)	Δ	Increment
$V_{\rm d}$	Diffusion (or "built-in") volt-	ΔE	Energy difference (eV)
	age (V)	$\Delta E_{\rm c}$, $\Delta E_{\rm v}$	Conduction and valence band
$V_{ m dgb}$	Diffusion voltage of grain boundary (used where V_d		discontinuities (eV) [Fig. 5.14]
	would be confusing) (V)	δ	Thickness of insulating layer
V_{m}	Voltage at maximum-power		in MIS structure (cm or Å)
	point (V)	δ_n, δ_p	Energy difference between $E_{\rm F}$
$V_{ m oc}$	Open-circuit voltage (V)		and conduction or valence
$v_{\mathbf{d}}$	Diffusion velocity $[=D/L]$ (cm sec ⁻¹)		band edges $[\delta_n = E_c - E_F;$ $\delta_p = E_F - E_V]$ (eV)
v_{th}	Average thermal velocity of	$\epsilon_{\rm r}$	Dielectric constant $[\epsilon_s = \epsilon_r \epsilon_0]$
	electrons or holes (cm	$\epsilon_{\rm s}$, $\epsilon_{\rm s0}$, $\epsilon_{\rm shf}$	Permittivity of semiconductor,
	sec ⁻¹) [= $(8kT/\pi m^*)^{1/2}$; at 300°K, $v_{\text{th}} = (1.91 \times 1.00)$	30	dc, and high frequency (F cm ⁻¹)
	$10^{7})(m_{0}/m^{*})^{1/2} \text{ cm sec}^{-1}$	ϵ_0	Permittivity of free space
$W_{ m d}$	Depletion layer width (cm)		$[=8.85 \times 10^{-14} \text{ F cm}^{-1}]$
$W_{ m dgb}$	Depletion layer width on one	η_c	Concentrator efficiency (%)
	side of a grain boundary (cm)	$\eta_{\scriptscriptstyle \mathrm{Q}}$	Quantum efficiency (%)
$W_{\rm i}$	Insulating layer width (cm)	$\eta_{ m s}$	Solar efficiency (%)
$W_{ m p}$	Peak watts (W)	θ	Angle
X	Distance coordinates	λ	Wavelength (µm)
	(cm)	μ_n, μ_p	Electron and hole mobilities
X_n, X_p	Distance coordinates of deple-		$(cm^2 V^{-1} sec^{-1})$
	tion layer edge for n-QNR	ν	Frequency of light (sec ⁻¹)
	and <i>p</i> -QNR (cm) [Fig. 5.1]	П	Product
$X_{n'}$	Distance coordinate such that	ρ	Charge density (C cm ⁻³)
	$(x_{n'} - x_n)$ is thickness of n-	ρ	Bulk resistivity (Ω cm)
	QNR (cm) [Fig. 5.1]	$ ho_{ m c}$, $ ho_{ m co}$	Contact resistivity: general
$X_{p'}$	$ x_{p'} - x_p $ is thickness of p-		and at zero-bias voltage, re-
	QNR (cm)		spectively (Ω cm ²)
y	Distance coordinate difference	$ ho_{ m s}$	Sheet resistivity ($\Omega \square^{-1}$)
	$(e.g., y_n = x_{n'} - x_n)$ (cm)	Σ	Sum
Z	Zenith angle of sun	σ	Conductivity (Ω^{-1} cm ⁻¹)
Z	Distance coordinate (cm)	$\sigma, \sigma_n, \sigma_p$	Recombination cross sections:

	general, for electrons, and	φ	Electrostatic potential (V)
	for holes, respectively (cm ²)	$\phi_{ m b}$	Potential barrier height, mea- sured from the Fermi level
τ, τ_n, τ_p	Minority carrier lifetimes:		(V)
	general, for electrons, and for holes, respectively	$\phi_{ m d}$	Potential difference induced by electric dipole at junc-
	(sec)		tion (V)
$ au_{n0}$, $ au_{p0}$	Extreme lifetime for electrons and holes (sec) [Section 3.5.2]	$\phi_{ m gb}$	Potential barrier height at grain boundary, measured from the Fermi level (V)
$ au_{ m r}$ much k	Carrier scattering relaxation	X 00 01	Electron affinity (V)
A. Payer	time (sec) [Eq. (3.20)]	Ω	Ohms
Φ	Radiation fluence (particles cm ⁻²)	ω	Angular frequency (radians sec ⁻¹)
ϕ	Work function (V)		

LIST OF ACRONYMS†

AM1, AM $m_{\rm r}$	Air-mass numbers [Section 2.2]	LPE	Liquid-phase epitaxial (growth)
BSF	Back-surface field (Section 4.5.1)	MIS	Metal/insulator/semicon- ductor junction
BSR	Back-surface reflection (optical, Section 7.6.3)	MOS	Metal/oxide/semiconduc- tor junction
CNR	Comsat nonreflective (cell)	OS	Oxide semiconductor
	[Section 7.4.4]	PEC	Photoelectrochemical cell
CVD	Chemical vapor deposition	PIN	p-type/insulator/n-type
CZ	Czochralski crystal growth		junction
	(e.g., Si)	PX	Polycrystalline
DLTS	Deep-level transient spec-	QNR	Quasi-neutral region
	troscopy *	R/G	Indicating the recombina-
EFG	Edge-fed growth (e.g., of	erin Komin	tion/generation compo-
	Si ribbon)		nent of junction trans-
FZ	Float zone crystal growth		port (or as subscript
	(e.g., Si)		"rg," e.g., J_{rg}
I/D	Indicating the injection/dif-	SIS	Semiconductor/insula-
	fusion component of diode transport ("id"		tor/semiconductor junction
	when used as subscript,	VE	Vacuum evaporation
	e.g., J_{id})	VMJ	Vertical multijunction cell
ITO	Indium tin oxide		10

[†] Table 9.1 lists acronyms for the deposition methods.

CONTENTS

Personal section of the section of t

List o	of Symbols		XV
List o	of Acronyms	Latin of April 1 This can feel -	xix
	the state of the s		
CHA	APTER 1 Survey of Basic Concepts		
	S		1
1.1	Sources of Energy		1
1.2	The Role of Photovoltaic Conversion		6
1.3	Historical Survey	a netfolimieth artif - 2 f 172	9
1.4		Overview	9
1.5			16
1.6		uture	21
	General References		23
	References		24
СНА	APTER 2 Solar Insolation		
2.1	Solar Spectrum		26
2.2			28
2.3			31
2.4	Solar Simulation		34
2.5			35
	General References		37
	References		37
	References		
CHA	APTER 3 Properties of Semiconductor	'S	
3.1	Energy Levels		38
3.2			40
3.3			44
	The state of the s		

Preface

viii		Contents
V 111		Comemo
2 1	Ontical Absorption	48
3.4	Optical Absorption Recombination	55
3.3	General References	67
	References	68
	References	00
СНА	PTER 4 Application of the Transport Equation	
4.1	Overview	69
4.2	Basic Ingredients for the Transport Equation	70
4.3	Derivation of the Transport Equation	73
4.4	Solution of the Transport Equation	74
4.5	Special Topics	83
4.6	Measurement of Minority Carrier Lifetime and Diffusion Length	90
	References	102
СНА	PTER 5 Junctions	
5.1	Introduction	105
5.2	Homojunctions	107
5.3	Heterojunctions	130
5.4	Modifications to the Simple Heterojunction Model	138
5.5	Models for Heterojunction Transport	147
5.6	Summary of Heterojunction Transport	158
5.7	Schottky Barriers, MIS, and SIS Structures	161
5.8	Ohmic Contacts	187
5.9	Summary / streamed ment to yearance	
	References	204
CHA	PTER 6 The Calculation of Solar Efficiency	all a l
	A DEALDACT TO VILLOUS A COMMISSION OF THE PARTY OF THE PA	
6.1	The Ideal Cell under Illumination	212
6.2	The Effects of Series and Parallel Resistance	220
6.3	Other Treatments of the Calculation of Solar Efficiency	231
6.4	The Effect of Temperature and Illumination on Cell Efficiency	234
6.5	Loss Analysis	242
	References	243
СНА	PTER 7 Silicon Solar Cells tedeplement A silicon Solar Cells	
7.1		245
7.2		248
7.3	Imperfections, Doping, and Lifetime	261
	i voping, and and	201

The Fabrication and Parameters for a Typical Si Cell

269

276

286

292

294

7.4

7.5

7.6

7.7

Fine Tuning

References

Novel Approaches

Economics and Innovation

CO	intents	ix
СН	APTER 8 Heterojunction and Heteroface Structure Cells	
8.	1 Choice of Heterojunction Solar Cell Components	299
8.2		304
8.3		323
8.4		323
0.	References Share and sample and the sample of the sample o	327
	Final Harding Committee of the State of the	320
CH.	APTER 9 Polycrystalline Thin Films for Solar Cells	
9.1	Introduction	330
9.2	2 Growth of Thin Films	335
9.3	Optical Effects in Thin Films	359
9.4		361
9.5		387
9.6		410
	General References	411
	References	412
CIL	APTER 10 The Cu _r S/CdS Cell: A Case History	
СПА	APTER 10 The Cu_xS/CdS Cell: A Case History of an All-Thin-Film Cell	
10.1	With a first transfer of the control	
10.1	Historical Introduction	418
10.2	Properties of Cu _x S and CdS	422
10.3	The Relation of Cu _x S Layer Properties to Cell Efficiency	426
10.5	and Stability	431
10.5	Fundamental Heterojunction Transport Phenomena in Cu _x S Cells	435
10.6	2 / 9 - 1 - 9 - 2 - 10	457
10.7	Summary	458
	General References	460
	References	460
СНА	APTER 11 Other Photovoltaic Cells	
11.1	Schottky, MIS, and SIS Junction Solar Cells	465
11.2	Amorphous Silicon	465
11.3	InP-Based Thin-Film Cells	480
11.4	CdTe-Based Cells	488
11.5	Cells Based on the I-III-VI ₂ Chalcopyrites	489
11.6	Exploratory Materials	494
	References	497
	Note: one of the control of the cont	500
СНА	PTER 12 Concentrators, Concentrator Systems,	
	and Photoelectrochemical Cells	
12.1	Elementary Concentrator Systems	507
12.2	Photovoltaic Cells Used in Concentrator Systems	515
12.3	Complex Systems	526
	The second second control of the second cont	320