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The subject of this book is the stability of structures subjected to external

loading that induces compressive stresses in the body of the structures. The
structural elements examined are beams, columns, beam-columns, frames,
rectangular plates, circular plates, cylindrical shells, and general shells.
Emphasis is on understanding the behavior of structures in terms of load-
displacement characteristics; on formulation of the governing equations;
and on calculation of the critical load.

Buckling is essentially flexural behavior. Therefore, it 1s imperative to
examine the condition of equilibrium in a flexurally deformed configura-
tion (adjacent equilibrium position). The governing stability equations are
derived by both the equilibrium method and the energy method based on
the calculus of variations invoking the Trefftz criterion.

Stability analysis is a topic that fundamentally belongs to nonlinear
analysis. The fact that the eigenvalue procedure in modern matrix and/or
finite element analysis 1s a fortuitous by-product of incremental nonlinear
analysis 15 a reafhrming testimony. The modern emphasis on fast-track
education designed to limit the number of required credit hours for core
courses in curriculums left many budding practicing structural analysts with
gaping gaps in their understanding of the theory of elastic stability. Many
advanced works on structural stability describe clearly the fundamental
aspects of general nonlinear structural analysis. We believe there is a need for
an introductory textbook such as this, which will present the fundamentals
of structural stability analysis within the context of elementary nonlinear
flexural analysis. It is believed that a firm grasp of these fundamentals and
principles is essential to performing the important interpretation required of
analysts when computer solutions are adopted.

The book has been planned for a two-semester course. The first chapter
introduces the buckling of columns. It begins with the linear elastic theory
and proceeds to include the effects of large deformations and inelastic
behavior. In Chapter 2 various approximate methods are illustrated along
with the fundamentals of energy methods. The chapter concludes by
introducing several special topics, some of them advanced, that are useful in
understanding the physical resistance mechanisms and consistent and
rigorous mathematical analysis. Chapters 3 and 4 cover buckling of beam-

columns. Chapter 5 presents torsion in structures in some detail, which is
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one of the least-well-understood subjects in the entire spectrum of structural
mechanics. Strictly speaking, torsion itself does not belong to a work on
structural stability, but it needs to be covered to some extent if one 1s to have
a better understanding of buckling accompanied with torsional behavior.
Chapters 6 and 7 consider stability of framed structures in conjunction with
torsional behavior of structures. Chapters 8 to 10 consider buckling of plate
elements, cylindrical shells, and general shells. Although the book 1s devoted
primarily to analysis, rudimentary design aspects are also discussed.

The reader is assumed to have a good foundation in elementary
mechanics of deformable bodies, college-level calculus, and analytc
geometry, and some exposure to differential equations. The book is
designed to be a textbook for advanced seniors and/or first-year graduate
students in aerospace, civil, mechanical, engineering mechanics, and
possibly naval architects and shipbuilding fields and as a reference book for
practicing structural engineers.

Needless to say, we have relied heavily on previously published work.
Consequently, we have tried to be meticulous in citing the works and hope
that we have not erred on the side of omission.
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1.1. INTRODUCTION

A physical phenomenon of a reasonably straight, slender member (or body)
bending laterally (usually abruptly) from its longitudinal position due to
compression 1s referred to as buckling. The term buckling 1s used by engi-
neers as well as laypeople without thinking too deeply. A careful exami-
nation reveals that there are two kinds of buckling: (1) bifurcation-type
buckling; and (2) deflection-amplification-type buckling. In fact, most, if
not all, buckling phenomena in the real-life situation are the deflection-
amplification type. A bifurcation-type buckling is a purely conceptual one
that occurs in a perfectly straight (geometry) homogeneous (material)

member subjected to a compressive loading of which the resultant must pass

Stabilin of Structures © 2011 Elsevier Inc
ISBIN 978-0-12-385122-2, do1:10.1016/B978-0-12-385122-2.10001-6 All rights reserved. 1 ’



2 Chai Yoo

though the centroidal axis of the member (concentric loading). It 1s highly
unlikely that any ordinary column will meet these three conditions pertectly.
Hence, it is highly unlikely that anyone has ever witnessed a bifurcation-
type buckling phenomenon. Although, in a laboratory setting, one could
demonstrate setting a deflection-amplification-type buckling action that is
extremely close to the bifurcation-type buckling. Simulating those three
conditions perfectly even 1n a laboratory environment is not probable.

Structural members resisting tension, shear, torsion, or even short
stocky columns fail when the stress in the member reaches a certain
limiting strength of the material. Therefore, once the Iimiting strength ot
material i1s known, it is a relatively simple matter to determine the load-
carrying capacity of the member. Buckling, both the biturcation and the
deflection-amplitication type, does not take place as a result of the resisting
stress reaching a limiting strength of the material. The stress at which
buckling occurs depends on a wvariety of factors ranging from the
dimensions of the member to the boundary conditions to the properties of
the material of the member. Determining the buckling stress 15 a fairly
complex undertaking,. »

It buckling does not take place because certain strength of the material is
exceeded, then, why, one may ask, does a compression member buckle?
Chajes (1974) gives credit to Salvadori and Heller (1963) for clearly eluci-
dating the phenomenon of buckling, a question not so easily and directly
explainable, by quoting the following from Structure in Architecture:

A slender column shortens when compressed by a weight applied to its top, and,
in so doing, lowers the weight's position. The tendency of all weights to lower their
position is a basic law of nature. It is another basic law of nature that, whenever
there is a choice between different paths, a physical pheromenon will follow the
easiest path. Confronted with the choice of bending out or shortening, the column
finds it easier to shorten for relatively small loads and to bend out for relatively
large loads. In other words, when the load reaches its buckling value the column
finds it easier to lower the load by bending than by shortening.

Although these remarks will seem excellent to most laypeople, they do
contain nontechnical terms such as choice, easier, and easiest, flavoring the
subjecuive nature. It will be proved later that buckling is a phenomenon that
can be explained with fundamental natural principles.

It biturcation-type buckling does not take place because the afore-
mentioned three conditions are not likely to be simulated, then why, one
may ask, has so much research effort been devoted to study of this
phenomenon? The bifurcation-type buckling load, the critical load, gives
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the upper-bound solution for practical columns that hardly satisfies any one
of the three conditions. This will be shown later by examining the behavior
of an eccentrically loaded cantilever column.

1.2. NEUTRAL EQUILIBRIUM

The concept of the stability of various forms of equilibrium of a compressed
bar is frequently explained by considering the equilibrium of a ball (rigid-
body) in various positions, as shown in Fig. 1-1 (Timoshenko and Gere
1961; Hoft 1956).

Although the ball is in equilibrium in each position shown, a close
examination reveals that there are important differences among the three
cases. If the ball in part (a) is displaced slightly from its original position of
equilibrium, it will return to that position upon the removal of the dis-
turbing force. A body that behaves in this manner is said to be in a state of
stable equilibrium. In part (a), any slight displacement of the ball from its
position of equilibrium will raise the center of gravity. A certain amount of
work is required to produce such a displacement. The ball in part (b), if it is
disturbed slightly from its position of equilibrium, does not return but
continues to move down from the original equilibrium position. The
equilibrium of the ball in part (b) is called unstable equilibrium. In part (b),
any slight displacement from the position of equilibrium will lower the
center of gravity of the ball and co-nsequent]y will decrease the potential
energy of the ball. Thus in the case of stable equilibrium, the energy of the
system is a minimum (local), and in the case of unstable equilibrium it is
amaximum (local). The ball in part (c), after being displaced slightly, neither
returns to its original equilibrium position nor continues to move away
upon removal of the disturbing force. This type of equilibrium 1s called
neutral equilibrium. If the equilibrium is neutral, there is no change in
energy during a displacement in the conservative force system. The
response of the column is very similar to that of the ball in Fig. 1-1. The
straight configuration of the column is stable at small loads, but it 1s unstable
at large loads. It is assumed that a state of neutral equilibrium exists at the

2 2

(@ (b) (c)
Figure 1-1 Stability of equilibrium



4 Chai Yoo

transition from stable to unstable equilibrium in the column. Then the load
at which the straight configuration of the column ceases to be stable is the
load at which neutral equilibrium is possible. This load 1s usually referred to
as the critical load.

To determine the critical load, eigenvalue, of a column, one must find
the load under which the member can be in equilibrium, both in the
straight and in a slightly bent configuration. How slightly? The magnitude
of the slightly bent configuration is indeterminate. It is conceptual. This is
why the free body of a column must be drawn in a slightly bent configu-
ration. The method that bases this slightly bent configuration for evaluating
the critical loads 1is called the method of neutral equilibrium (neighboring
equilibrium, or adjacent equilibrium).

At critical loads, the primary equilibrium path (stable equilibrium,
vertical) reaches a bifurcation point and branches into neutral equilibrium
paths (horizontal). This type of behavior 1s called the buckling of bifurcation

type.

1.3. EULER LOAD

It is informative to begin the formulation of the column equation with
a much idealized model, the Euler' column. The axially loaded member
shown in Fig. 1-2 is assumed to be prismatic (constant cross-sectional area)
and to be made of homogeneous material. In addition, the following further
assumptions are made:

1. The member’s ends are pinned. The lower end is attached to an
immovable hinge, and the upper end is supported in such a way that it
can rotate freely and move vertically, but not horizontally.

2. The member is perfectly straight, and the load P considered positive
when it causes compression, is concentric.

3. The material obeys Hooke’s law.

4. The deformations of the member are small so that the term (/)7 is
negligible compared to unity in the expression for the curvature,
V' + 0/)2]3/2. Therefore, the curvature can be approximated by v >

The Euler (1707-1783) column is due to the man who, in 1744, presented the first accurate column
analysis. A brief biography of this remarkable man is given by Timoshenko (1953). Although 1t 1s
customary today to refer to a simply supported column as an Euler column, Euler in fact analyzed
a flag-pole-type cantilever column in his famous treatise according to Chajes (1974).

2 Vand )"’ denote the first and second derivatives of v with respect to x. Note: [V'| < /| but
[V/| = thousandths of a radian in elastic columms.
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Z
(a) (b)

Figure 1-2 Pin-ended simple column

- =y (1.3.1)

From the free body, part (b) in Fig. 1-2, the following becomes immediately
obvious:

ED' = —M(x) = =Py or EL/+Py =0 (1.3.2)

Equation (1.3.2) 1s a second-order linear differential equation with
constant coefticients. Its boundary conditions are

y=0 atx =0 and x =/ (1.3.3)

Equations (1.3.2) and (1.3.3) define a linear eigenvalue problem. The
solution of Eq. (1.3.2) will now be obtained. Let k> = P/EI, then
V' + k*y = 0. Assume the solution to be of a form y = ae"™ for which
i . Substituting these into Eq. (1.3.2) yields

/ " 2 mx
Vo= am™ and y' = am ™

b7 ] .
(m? + k)™ = 0.
Since a¢™ cannot be equal to zero for a nontrivial solution,
2 F & - - 9
m” + k™= 0, m = Lki. Substituting gives

kix

y = Crad™ + Crae ™™™ = A cos kx + Bsin kx

A and B are integral constants, and they can be determined by boundary
conditions.
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y=0 ax=0=2A=0

y =0 atx = {=Bsinkl/ = 0

As B # 0 (f B = 0, then it is called a trivial solution; 0 = 0),
sinkl = 0=kt = nm
where n = 1,2, 3. .. . but n # 0. Hence, k* = P/EI = ;1371'3//"2. from
which it follows immediately

R > El
The eigenvalues P, called critical loads, denote the values ot load P for which
anonzero deflection of the pertect column 1s possible. The deflection shapes

at critical loads, representing the eigenmodes or eigenvectors, are given by

. onTx _
v = Bsin wE (1.3.5)

Note that B is undetermined, including its sign; that 1s, the column may
buckle in any direction. Hence, the magnitude of the buckling mode shape
cannot be determined, which is said to be immaterial.
The smallest buckling load for a pinned prismatic column corresponding
ton=11s
mEl

1 )L’ - pz

(1.3.6)

It"a pinned prismatic column of length £ is going to buckle, it will buckle at
n =1 unless external bracings are provided in between the two ends.

A curve of the applied load versus the deflection at a point in a structure
such as that shown in part (a) of Fig. 1-3 is called the equilibrium path. Points
along the primary (initial) path (vertical) represent configurations of the
column in the compressed but straight shape; those along the secondary path
(horizontal) represent bent configurations. Equation (1.3.4) determines
a periodic bifurcation point, and Eq. (1.3.5) represents a secondary (adjacent or
neighboring) equilibrium path for each value of n. On the basis of Eq. (1.3.5),
the secondary path extends indefinitely in the horizontal direction. In reality,
however, the deflection cannot be so large and yet satisties the assumption of
rotations to be negligibly small. As Pin Eq. (1.3.4) is not a function of y, the
secondary path is horizontal. A finite displacement formulation to be discussed
later shows that the secondary equilibrium path for the column curves upward
and has a horizontal tangent at the critical load.



