

Mastering

Mathematics for Electrical and Electronic Engineering

Noel M. Morris

© Noel Morris 1994

All rights reserved. No reproduction, copy or transmission of this publication may be made without written permission.

No paragraph of this publication may be reproduced, copied or transmitted save with written permission or in accordance with the provisions of the Copyright, Designs and Patents Act 1988, or under the terms of any licence permitting limited copying issued by the Copyright Licensing Agency, 90 Tottenham Court Road, London W1P 9HE.

Any person who does any unauthorised act in relation to this publication may be liable to criminal prosecution and civil claims for damages.

First published 1994 by THE MACMILLAN PRESS LTD Houndmills, Basingstoke, Hampshire RG21 2XS and London Companies and representatives throughout the world

ISBN 0-333-59359-6

A catalogue record for this book is available from the British Library.

Copy-edited and typeset by Povey-Edmondson Okehampton and Rochdale, England

Printed in China

10 9 8 7 6 5 4 3 2 1 03 02 01 00 99 98 97 96 95 94

Mastering

Mathematics for Electrical and Electronic Engineering

Macmillan Master Series

Accounting Arabic Astronomy

Background to Business

Banking

Basic Management Biology British Politics Business Communication

Business Communic

Business Law

Business Microcomputing

C Programming Catering Science Catering Theory Chemistry

COBOL Programming

Commerce

Computer Programming

Computers

Economic and Social History Economics

Electrical Engineering

Electronics English as a Foreign Language

English Grammar English Language English Literature

French 1 French 2 German 1 German 2 Hairdressing Human Biology Italian 1

Italian 2 Japanese Manufacturing Marketing Mathematics

Mathematics for Electrical and Electronic

Engineering

Modern British History Modern European History Modern World History Pascal Programming

Philosophy Physics Psychology Restaurant Service Science Secretarial Procedures Social Welfare

Social Welfare
Sociology
Spanish 1
Spanish 2
Spreadsheets
Statistics
Study Skills
Word Processing

To Laura and Alex

Preface

Mathematics is an essential tool in the armoury of electrical and electrical technicians and engineers and, in particular, there are certain branches of mathematics which have special relevance to them. This book covers the general background of mathematics, and places special emphasis on the needs of electrical and electronic engineering.

The book attends to the requirements not only of students studying on their own, but also those following BTEC ONC, OND, HNC and HND courses, and will be specially appropriate to A-level students intending to transfer to degree and other courses.

As well as dealing with the essential mathematics of electrical and electronic courses, the book contains a large number of worked examples, which help the reader to explore the subject to greater depth. At the end of each chapter you will find not only many self-test questions (with answers at a later stage), which will help you test your grasp of the subject matter, but also a summary of important facts included in the chapter.

A 'plus' feature of the book is the chapter on SPICE software (Simulation Program with Integrated Circuit Emphasis), which is of special relevance to the solution of all types of circuits. This software is readily available, and a wide range of circuit solutions are described in chapter 16. I am especially indebted to Mr P. Goss, Technical Manager of ARS Microsystems, for his advice and assistance in the matter.

I would like to thank my wife for her support, without which the writing of this book would not have been possible.

NOEL M. MORRIS

\bigcirc

How to use this book

Mathematics forms the backbone of Electrical and Electronic Engineering courses, and this book will take the reader through a significant part of his or her education.

The chapters of the book are listed below, together with the type of course for which they are best suited. The symbol A designates those suitable for science-based A-level courses, N designates those of particular value to BTEC ONC/D courses, and H signifies those of interest to BTEC HNC/D courses.

Chapter

- Fractions, roots and powers -A, N
- 2 Numbers and numbering systems A, N, H
- 3 Logarithms, the decibel and the Neper A, N, H
- 4 Algebra A, N, H
- 5 Simultaneous equations A, N, H
- 6 Trigonometry A, N, H
- 7 Further trigonometric skills A, N, H
- 8 Mensuration A. N
- 9 Graphs A, N, H
- 10 Vectors and phasors A, N, H
- 11 Complex numbers A, N, H
- 12 Differentiation A, N, H
- 13 Integration A, N, H
- 14 Transients in electrical circuits A. H
- 15 Boolean algebra and logic circuits A, N, H
- 16 Computer solution of electric circuits A, N, H

Chapter 16 includes details of one of the most important computer packages for use with electronic and electrical circuit analysis, namely SPICE (Simulation Program with Integrated Circuit Emphasis). There is, however, a wide range of computer packages available for the solution of what otherwise can be very complex problems. For example, DERIVE and MATHCAD are very suitable for the solution of mathematical problems. This type of software is likely to revolutionise the teaching of mathematics.

Most software is available through software houses which advertise in computer magazines. A wide range of very low cost mathematical and scientific software is also available through SHAREWARE suppliers, which are also advertised in computer magazines.

Contents

	List o	f figures and tables	xiii
	Prefac	ce	xix
	How I	to use this book	xx
1	Fract	tions, roots and powers	1
	1.1	Introduction	1
	1.2	Integers, prime numbers, factors and multiples	1
	1.3	Fractions	3
	1.4	Ratios, per cent and per unit values	5
	1.5	Direct proportion, inverse proportion and reciprocal	7
	1.6	Addition and subtraction of fractions	8
	1.7	Multiplication of fractions	10
	1.8	Division of fractions	10
	1.9	Bases and powers	11
		Raising a fraction to a power	13
	1.11	Fractional powers	15
		Scientific notation	17
		test questions	19
	Sumi	mary of important facts	20
2	Num	bers and numbering systems	22
	2.1	Introduction	22
	2.2	Terminology	22
	2.3	The basis of numbering systems	23
	2.4	Converting an integer of any radix into decimal	25
	2.5	Converting a decimal integer into another radix	26
	2.6	Converting a binary integer into an octal integer	27
	2.7	Converting a binary integer into a hexadecimal integer	27
	2.8	Dealing with a number having a fractional part	27
	2.9	Binary-coded decimal codes	28
	2.10	Addition of numbers	29
	2.11	Unsigned and signed binary numbers	32
		Negative binary values	32
		Binary subtraction	33
		Binary multiplication	35
	2.15	Binary division	36
	Self-	test questions	37
	Sumi	mary of important facts	38

3	Loga	rithms, the decibel and the Neper	39
		Introduction	39
	3.2	The principle of logarithms	39
	3.3	Common logarithms or logarithms to base 10	42
	3.4	Antilogarithms – the reverse of logarithms	44
	3.5	Multiplication using common logarithms	44
	3.6	Division using common logarithms	45
	3.7	Calculation of roots and powers using logarithms	47
	3.8	The decibel	48
	3.9	Voltage and current ratios in decibels	50
	3.10	Natural logarithms (Naperian or hyperbolic	
		logarithms)	52
	3.11	The Neper	54
	3.12	Converting a logarithm of one base to another base	54
	Self-	test questions	56
	Sum	mary of important facts	56
4	Alge		58
	4.1	Introduction	58
	4.2	Basic considerations	58
	4.3	Introduction to algebraic manipulation	59
	4.4	Basic laws of algebra	64
	4.5	Algebraic laws of indices (powers)	64
	4.6	Transposition and manipulation of formulae	65
	4.7	Factorising	70
	4.8	Methods of solving a quadratic equation	72
		test questions	78
	Sum	mary of important facts	79
5	Simi	ultaneous equations	80
J	5.1	Introduction	80
	5.2	General principles	80
	5.3	Deducing simultaneous equations for a circuit	80
	5.4	Solving simultaneous linear equations by substitution	83
	5.5	Solving simultaneous equations by elimination	84
	5.6	Checking the calculated values	85
	5.7	Further examples of simultaneous equations	86
	5.8	Solution of simultaneous equations using determinants	94
	5.9	Programs for solving simultaneous equations using the	
		BASIC language	98
	Self-	test questions	101
	Sum	mary of important facts	102

6	Trigo	onometry	103
	6.1	Introduction	103
	6.2	Angles and angular measure	103
	6.3	Trigonometric ratios of acute angles	105
	6.4	Inverse trigonometric functions	106
	6.5	The four quadrants	106
	6.6	Angles greater than 360° and negative angles	107
	6.7	The sine ratio	108
	6.8	The graph of a sine wave	114
	6.9	Period, frequency, angular frequency, amplitude and	
		phase angle	116
	6.10	The cosine ratio	120
	6.11	Graph of cosine θ	121
	6.12	The tangent ratio	124
	6.13	The graph of $\tan \theta$	126
	Self-	test questions	128
	Sum	mary of important facts	128
7	Furtl	ner trigonometric skills	131
	7.1	Introduction	131
	7.2	The sine rule	131
	7.3	The cosine rule	133
	7.4	Trigonometric identities	135
	7.5	Compound angle formulae	136
	7.6	Product of sines and cosines	138
	7.7	Double-angle formulae	139
	Self-	test questions	139
	Sumi	nary of important facts	140
8		suration	142
	8.1	Introduction	142
	8.2	Introduction to polygons	142
	8.3	Areas of plane figures	143
	8.4	Volume and surface area of solids	145
	8.5	Area of irregular shapes	147
	8.6	The mid-ordinate rule	147
	8.7	Simpson's rule	148
	8.8	The average value or mean value of a waveform	149
		test questions	151
	Sumi	nary of important facts	152
9	Grap		154
	9.1	Introduction	154
	9.2	Basic facts about graphs	154
	9.3	The straight-line graph	156

x Contents

	9.4	Predicting the 'best fit' straight-line graph	161
	9.5	Graphical solution of linear simultaneous equations	163
	9.6	Direct proportionality	165
	9.7	Inverse proportionality	165
	9.8	Graphs of quadratic equations	167
	9.9	Graphical solution of a quadratic equation	170
	9.10		171
	9.11		174
	9.12		175
		Law of the form $y = Ax^n + B$	180
	9.14	Plotting and sketching an exponential curve of the	
		form $y = Ae^{-t/\tau}$	182
	9.15	Settling-time of $y = Ae^{-t/\tau}$	184
		Fall-time of $y = Ae^{-t/\tau}$	185
	9.17	Plotting and sketching a curve of the form	
		$y = A(1 - e^{-t/\tau})$	187
	Self-te	est questions	190
	Summ	ary of important facts	192
10	Vector	rs and phasors	195
	10.1	Introduction	195
	10.2	Vector addition and subtraction	195
	10.3	Phasor representation	201
	10.4	Phase relationship between sinewayes	202
	10.5	Phasor diagrams	205
	10.6	Addition and subtraction of phasors	206
	10.7	Problems involving more than two vectors or phasors	210
	Self-te	est questions	210
		ary of important facts	211
11	Comp	lex numbers	213
11	11.1	Introduction	213
	11.2	More about imaginary numbers	215
	11.3	The Argand diagram	215
	11.4	The polar form of a complex number	216
	11.5	Relationship between rectangular and polar complex	210
	11.5	numbers	217
	11.6	Representation of electrical impedance in complex	
		form	219
	11.7	Addition and subtraction of complex numbers	220
	11.8	Multiplication of complex numbers	222
	11.9	The conjugate of a complex number	224
	11.10	Division of complex numbers	225
	11.11	A.C. electric circuit calculations	226
		est questions	230
		ary of important facts	231

~	
Contents	X1
Contents	AI

12	Differ	entiation	233
	12.1	Introduction	233
	12.2	The concept of a 'function'	233
	12.3	Notation for a small change in a variable	234
	12.4	Gradient and slope of a graph	235
	12.5	Differentiation from first principles	237
	12.6	Differentiating higher-order functions	238
	12.7	Differentiating the general case of $y = ax^n$	240
	12.8	Differentiating a constant	241
	12.9	Differentiating a sum of functions	241
	12.10		243
	12.11		244
		Introduction to turning points	245
		Determination of maxima and minima	245
		Differentiating a function of a function	249
		Differential of a product	251
		Differential coefficient of a quotient	252
		Standard derivatives	256
		est questions	259
	Summ	ary of important facts	260
13	Integr	ation	262
	13.1	Introduction	262
	13.2	Indefinite integrals and the arbitrary constant of	
		integration	262
	13.3	Integrating x^n when $n = -1$	265
	13.4	Integrating a sum of differentials	267
	13.5	Integration of trigonometrical functions	267
	13.6	The definite integral – area under a curve	268
	13.7	Volume of revolution	273
	13.8	Mean value or average value of an alternating	
		waveform	275
	13.9	Effective value or root-mean-square (r.m.s.) value of a	
		wave	277
		est questions	280
	Summ	ary of important facts	281
14		ients in electrical circuits	283
	14.1	Introduction	283
	14.2	An introduction to differential equations	284
	14.3	Solution of a differential equation whose variables	
		can be separated	284
	14.4	Capacitor charge	286
	14.5	Charging a capacitor when it initially stores some	
		charge	291
	14.6	Capacitor discharge	292

X11	(on	tents
All	COLL	CHLA

	14.7	The rise of current in an inductive circuit	297
	14.8	The decay of current in an inductive circuit	301
	14.9	Breaking the current in an inductive circuit	306
	Self-te	est questions	308
		ary of important facts	309
15	Booles	an algebra and logic circuits	311
	15.1	Introduction	311
	15.2	Logic signal levels	311
	15.3	The AND gate	312
	15.4	The OR gate	313
	15.6	Truth table for a gate with more than two input	
		signals	315
	15.6	The NOT gate	315
	15.7	Boolean algebra or the algebra of logic	320
	15.8	De Morgan's theorem	323
	15.9	Karnaugh maps	324
	15.10	Simplification of Karnaugh maps	326
	15.11	Design of an electronic adding circuit	331
		An introduction to fuzzy logic	333
		est questions	333
	Summ	ary of important facts	335
16	Comp	uter solution of electric circuits	336
	16.1	Introduction	336
	16.2		336
	16.3	Analysis of a series-parallel circuit	343
	16.4	An electrical network	344
	16.5		346
	16.6		348
		A '.AC' analysis	351
	16.8	Small-signal analysis of a common-emitter amplifier	354
	16.9		358
		The use of subcircuits	362
		Sources of SPICE-based software	365
		est questions	366
	Summ	ary of important facts	366
	Solution	ns to self-test questions	367
	Index	-	373

List of figures and tables

Figures

3.1	Graph showing the value of the common logarithm of a	
	range of numbers	43
3.2	Cascaded electronic units	48
5.1	Analysis of an electrical circuit	81
5.2	Worked Example 5.1	87
5.3	Solution of Worked Example 5.1	87
5.4	Worked Example 5.2	89
5.5	Worked Example 5.3	91
5.6	Solution of two simultaneous equations	99
5.7	Solution of three simultaneous equations	100
5.8	Self-test question 5.6	101
6.1	(a) An acute angle, (b) a right angle, (c) an obtuse angle,	
	(d) a reflex angle, (e) the radian	103
6.2	The names of the sides of a right-angled triangle	105
6.3	The four quadrants of a circle	106
6.4	Trigonometric ratios which are always positive	107
6.5	Negative angles	107
6.6	Angles in the four quadrants	108
6.7	Solution to Worked Example 6.2(b)	111
6.8	Solution to Worked Example 6.2(c)	111
6.9	Solution to Worked Example 6.2(d)	112
6.10	Worked Example 6.4	113
6.11	Graph of $y = c \sin \theta$	114
6.12	Primary and secondary solutions of a sine equation	115
6.13	Amplitude values of a sine wave	117
6.14	Phase angle	118
6.15	Graph of $\cos \theta$ for the range $\theta = -90^{\circ}$ to $\theta = 360^{\circ}$	122
6.16	Worked Example 6.7	124
6.17	Graph of $\tan \theta$ for the range $\theta = -90^{\circ}$ to $\theta = 360^{\circ}$	126
6.18	Solution to Worked Example 6.8	127
7.1	The sine rule	131
7.2	Trigonometrical identities	135
8.1	(a) A rectangle, (b) a square, (c) a parallelogram,	
	(d) a trapezium	143
8.2	A number of shapes occurring in engineering practice	143
8.3	Worked Example 8.1	144

8.4	Surface area and volume of some solids	145
8.5	Worked Example 8.2	146
8.6	The mid-ordinate rule	147
8.7	Simpson's rule	148
8.8	(a) A rectangular or square wave, (b) a sine wave	150
8.9	Self-test question 8.9	152
9.1	Defining points on a graph using cartesian or rectangular	
	co-ordinates	155
9.2	Straight-line graphs	156
9.3	Solution of Worked Example 9.1(c)	158
9.4	Solution of Worked Example 9.2	159
9.5	Solution of Worked Example 9.3	160
9.6	The effect of an 'error' in a measured value	161
9.7	(a) An electrical circuit, (b) its graphical solution	164
9.8	Graph of $xy = k$ or $y = k/x$	166
9.9	Safe working area for a semiconductor device	167
9.10	Parabolas for which parameters b and c are both zero	168
9.11	Parabolas for which parameter b is zero	169
9.12	The effect of parameter b on the position of the parabola	169
9.13	Solution to Worked Example 9.5	172
9.14		173
9.15	Graphs of cubic equations	174
9.16	Solution to Worked Example 9.7	176
9.17	Graph for the $v-i$ values in Worked Example 9.8	176
9.18	Using linear graph paper with logarithmic scales marked	
	on it	177
9.19	Logarithmic scale divisions	178
9.20	Log-log plot, Worked Example 9.8	179
9.21	Solution to Worked Example 9.9	181
9.22	Graph of $y = e^{-0.5t}$	183
9.23	A simple method of sketching a decaying exponential	
	curve	184
9.24	The settling-time and fall-time of $y = e^{t/\tau}$	185
9.25	The graph of $y = 10(1 - e^{t/\tau})$	188
10.1	Resolving force F into its horizontal and vertical	
	components	195
10.2	Solution to Worked Example 10.2	198
10.3	Solution to Worked Example 10.3	200
10.4	Phasor diagram representing a sine wave at (a) $\theta = 0^{\circ}$,	
	(b) $\theta = 30^{\circ}$, (c) $\theta = 60^{\circ}$, (d) $\theta = 90^{\circ}$	202
10.5	(a) v and i are in phase with one another, (b) i leads v by	
	ϕ , (c) v leads i by ϕ	203
10.6	(a), (b), (c) possible phasor diagrams representing Figure	
	10.5(a); (d), (e) possible phasor diagrams representing	
	Figure 10.5(b); (f), (g) possible phasor diagrams	
	representing Figure 10.5(c)	205

	List of figures and tables	XV
10.7	Solution of Worked Example 10.5	207
10.8	Solution of Worked Example 10.6	208
11.1	Representation of a complex number	213
11.2	The Argand diagram	216
11.3	Relationship between rectangular and polar forms of a	
	complex number	217
11.4	Impedance triangle of a series inductive circuit	219
11.5	Conjugate of a complex number	224
11.6	A series a.c. circuit	227
11.7	Phasor diagram for the series circuit calculation	228
11.8	A parallel a.c. circuit	229
11.9	Phasor diagram for the parallel circuit calculation	230
12.1	The gradient and slope of a line	235
12.2	The gradient of a curve	235
12.3	Stationary points on a curve; '+' means a positive	
	gradient, '-' means a negative gradient	244
12.4	The graph of $y = x^2$	245
12.5	The graph of $y = -x^2$	247
12.6	Worked Example 12.12	254
12.7	Graph showing the curve for power consumption in a	
	resistive circuit as the resistance changes in value	255
13.1	The area under a graph	269
13.2	Simple application of integration to determine the area	270
12.2	under a graph between two limits	270 271
13.3 13.4	Solution to Worked Example 13.4 Solution to Worked Example 13.5	271
13.4	Volume of revolution	273
13.6	Volume of a cylinder	274
13.7	Volume of a teyrinder Volume of a hemisphere	274
13.8	Examples of alternating waveforms	275
13.9	Worked Example 13.11	279
13.10	Self-test question 13.4	280
13.11	Self-test question 13.5	281
13.12	Self-test question 13.6	281
14.1	Capacitor charge	286
14.2	Transients in an R-C circuit during capacitor charge	289
14.3	Capacitor charge with an initial charge on the capacitor	292
14.4	Capacitor discharge	293
14.5	Capacitor discharge curves	294
14.6	Rise of current in an inductive circuit	297
14.7	Curves during the rise of current in an L-R circuit	299
14.8	Decay of current in an L-R circuit	301
14.9	Curves during the decay of current in an inductive circuit	303
14.10	Solution to Worked Example 14.4	305
14.11	Breaking an inductive circuit	306
14.12	Self-test question 14.3	308