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PREFACE

The present volume is based upon the lectures presented at a Summer
School held in Liverpool in July 1980, the fifth in a sequence of such
schools organized jointly by the Department of Computational and Statisti-
cal Science at Liverpool University and the Department of Mathematics at
the University of Manchester with the help and participation of a number

of external speakers.

The proceedings of the previous four summer schools have been publish-
ed by Oxford University Press and it is a pleasure for the editors to thank
the Press for their continued interest and assistance. The present volume
should be read in conjunction with its companion volumes from earlier
summer schools. It has been our intention to combine the various contri-
butions into a coherent whole, a delicate task which has been made easier

by the willing co-operation of the individual contributors, who were:

I. Barrodale (Victoria), E. Bohl (Konstanz), D. Kershaw (Lancaster),
A. Spence (Bath), M.R. Osborne (Canberra), C. Phillips (Hull);
C.T.H. Baker, T.L. Freeman, I. Gladwell, G. Hall, Joan E. Walsh, J. Williams
(Manchester) ; R. Cook, L.M. Delves, L.E. Scales, R. Wait, J.M. Watt

(Liverpool).

The editors have endeavoured to adopt a fairly uniform house-style,
but to relax it where slavish adherence would cause unnecessary complica-
tions, and they wish to thank the individual contributors for the thought
they have given to accommodating the suggestions of the editors. As a

safeguard, final (proof) versions have been referred to contributors.

Finally, the editors dedicate their efforts in producing this volume
to their respective wives, whose support and ecouragement they value and

appreciate.

Manchester Christopher T.H. Baker
and Hull, 1981. Chris Phillips
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PART ONE

ALGEBRAIC AND TRANSCENDENTAL EQUATIONS






INTRODUCTION TO NONLINEAR ALGEBRAIC EQUATIONS
Contributed by T.L. Freeman and J.E. Walsh

1.1. TYPES OF PROBLEM

Nonlinear algebraic equations arise in many different contexts in
numerical analysis, the most important being the discretization of non-
linear operator equations, the algebraic eigenvalue problem, and curve

fitting with nonlirear parameters. Let us consider the general system

fi(x) fi(xl’ Tpy Tgy vens 2,) =0, £=1,2, ..., m, (1.1)

which may be written in vector notation as
f(x) = 0. (1.2)

If m=n =1, we have a single equation in a single variable; important
examples of this case are the eigenvalue problem and general polynomial
equations in one variable, which will be treated in later chapters. The
problem of curve fitting leads to a system with m > 7, where it is not
possible to satisfy the equations exactly, and we define the solution

as the value of x which minimizes some function of the residuals. This
case will also be discussed later. In the present chapter, we shall
consider systems for which m =#7n and % > 1, and we shall assume that
the variables and functions take real values only.

When the nonlinear system arises from the discretization of an
operator equation, the functions fé(x) generally have a special
structure, which depends on the form of the operator and on the type
of discretization. An example of a structure which arises frequently
is the band system, which is an extension of the idea of a band matrix
in linear equations. The system (1.2) is said to have a band form if
the Zth function fi(x) depends only on a limited number of variables

lying within some band. This can be stated as
— =0, for |j-7%| >k, (1.3)

where k < n. The system is full if no such restriction applies.
Systems of band form arise from boundary-value problems in ordinary
differential equations when we use local methods of discretization,

such as finite differences or finite elements. When global discretization
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is used the solution is approximated by a single expression over the
whole region, and the resulting system will generally be full. For
elliptic partial differential equations with local approximation of the

solution, we obtain band systems which are also sparse, i.e. in addition
af .

to (1.3) we have 553-5 O for most of the variables xj within the

band. The systems wiich arise in solving elliptic problems are generally
of high order, and it is important to take advantage of the sparsity
and the band structure in devising efficient methods of solution.

Another type of structure which is significant in numerical work

is the "almost linear" system. Suppose
f(x) = Ax - p(x) = 0, (1.4)

where A is a non-singular nxn matrix, and p(x) 1is a nonlinear
function. If p(x) is small compared with Ax we can regard it as a
correction term, and we derive a simple iterative scheme for solving
(1.4) as follows

Pl L 0,1,2,... . (1.5)

. . s . 5 0 .
The iteration starts with a suitable estimate x[ ], and the successive
s 2 . . :
lterates x[l], x[ ] «+«. are obtained by solving a sequence of linear
k - : .
problems. If x[ ] converges to some limit, this clearly gives a solu-

tion of (1.4). Another example of an almost linear system is

f(x) = [A®)]x -b =0, (1.6)

where A(x) is an 7 xn matrix whose elements have a 'small' dependence

on x. This form suggests the iterative scheme

INCLA Y LSS 1.7

which is slightly less easy to apply than (1.5), because the matrix
changes at each step.
To investigate the behaviour of a general iteration of this type,

suppose the system f(x) = O can be written in the equivalent form
x = g(x), (1.8)
which has the same roots as the original equations. The iterative method
based on (1.8) is
+1
o L A T T (1.9)
which includes (1.5) and (1.7) as special cases. Clearly the function

g(x) must be chosen suitably, so that the calculation of each step is



reasonably simple and the iteration converges rapidly. We consider the
general conditions for convergence in the next section, but first we
need to define the basic vector and matrix norms which will be used.

The vector norm is a measure of the size of a vector, and it enables
us to give a precise meaning to the rate of convergence of a vector

iteration. The two most important examples of a vector norm are

infinity norm: ||x||°° = max]xil,
7 ”id (1.10)
%, morm: Hxllz = {Z mi} ¢
)
To obtain a corresponding matrix norm, we take
[|all = max Ulax] 7 1=y . (1.11)
ll=[l#0
It is easily shown that
T
Iall, = maxtTlags|v,  llall, = maxiro ML (1.12)

where A; is an eigenvalue of ATA. Other examples of norms, and the

relations between them, are discussed by Stewart (1973).

1.2. CONTRACTION MAPPING THEOREM

For a general nonlinear system it is not usually possible to prove
the existence of a solution a priori, and if a solution does exist, it
may not be unique. The iterative method (1.9) is important for the theory
as well as for practical applications, because in suitable cases it can
be used to establish the existence and uniqueness of a solution in a
specified region of the space Rr".

For limited classes of problems we can establish the "global" conver-
gence of certain iterative methods (Section 1.8), but in general we have
to consider the iteration within a restricted region D0 say, where the
function f£(x) 1is defined and the successive iterates g(x[k]) can be
computed. For nonlinear iterations the main problem often lies in finding
a suitable region D, in the neighbourhood of the solution, and this
problem will recur frequently in later chapters. (For linear iterationms,
by contrast, the iterative methods are always globally convergent if
they converge at all, and the choice of starting points is not important.)

Suppose the vector o is a solution of the equations £f(x) = 0.

Then it also satisfies the equivalent system (1.8), and from (1.9) we
have

L o = g(x[k]) - g@). (1:13)

<l
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s ; [k+1]
The left-hand side is the error after the (k+1)th step, e say,

[|e[*+1]y)

and the iteration converges if as k increases. The
basic theorems on convergence require that the function g(x) has a
contraction property, defined in (1.14) below. At this stage we do not
need to assume that g(x) is differentiable.

THEOREM 1.1. Contraction Mapping: Suppose that D0 is a set of points
in R" and that g(x) lies in Dy for any x in Dy. If there exists

a constant A such that

lex) - eIl < Allx -y, A<, (1.14)

for all x, y in Dy, then the iteration (1.9) converges to a unique
fixed point for any x[o] lying in Dy

The proof is given by Ortega and Rheinboldt (1970, p.120).
THEOREM 1.2. Error of the Iterates: Under the conditions of Theorem 1.1,

the following error estimate holds

e h1 = 1< A Dty

- Ell £l

= (1.15)

The proof is in Ortega and Rheinboldt (1970, p.385).
In practice it may not be easy to verify that g(x) 1lies in Dy
for any x in D0 and an alternative condition may be used. Given

NO 0. [0,

in DO, let x and consider the sphere

s={muz-xﬂh|sf%1u“]-xwm}. (1.16)

Then if S 1lies in Dy and (1.14) holds, the results of Theorems 1.1
and 1.2 follow (Collatz, 1966, p.214).
From (1.15) it is easy to show that

RPN IO (1.17)

so the rate of convergence of the iteration is at least geometric. How-
ever, this result does not give a good error bound unless we have a good
estimate of A. If g(x) is strongly nonlinear, the bound in (1.17) is
likely to be a considerable over-estimate of the error unless Do is
very small.

When g(x) 1is differentiable in Dys we can express A in terms

of partial derivatives. The Jacobian of g(x) 1is the nxn matrix

Bgi
Jg(x) = R . (1.18)
J



From (1.14) and the mean-value theorem, we can obtain a sufficient con-

dition for convergence in the form

A= max ||J_ ()] < 1. (1.19)
xeD0 g

In general, the iteration (1.9) will not be implemented exactly.

This is because any numerical calculation is subject to rounding error,

x[k+1]

may not be solved exactly.

[k+1]

In the examples (1.5) and (1.7), the new iterate x is obtained

and also because the equations for

from a system of linear equations, and the latter system is often solved
by another iteration, making an inner loop in the main calculation. To
save computation time, we do not want to obtain the intermediate values

(K

allowed at each iterative step without affecting the overall convergence.

to high accuracy, and so we need to estimate how much error can be

A simple result on the effect of perturbations is given by the following
theorem.
THEOREM 1.3 . Perturbed Iterations: Suppose that g(x) satisfies the

conditions of Theorem 1.1, and that g(x) is a perturbation of g(x)

such that
lgx) - gx)|]| e, x in Dy . (1.20)
-[11 _ - [o] =
Let x =g(x "), and let S be the sphere
- 1 0
5 = [z—x[]n <—||x[] []H +—_—. (1.21)
Then if S 1lies in Do the iterates Q[k+1] = é(g[k]) remain in S,

and

(R i - (1.22)

The proof is given by Collatz (1966, p.218).

We note that g(x) is not necessarily a continuous perturbation of
g(x). Since the unperturbed iteration is convergent, we see that the
perturbed iterates will converge to the true solution up to a certain
accuracy, after which we must reduce € to obtain any further improvement.

All the results above assume that the conditions hold in a region
D0 containing the solution a. The set of all points for which the
iteration (1.9) converges to o 1is called the domain of attraction of
o. For certain solutions there may be no domain of attractiom (other
than the point itself); in such cases the iteration is unstable in the

neighbourhood of the solution, and either diverges or converges to some



more distant point.

1.3. NEWION'S METHOD

We now consider the construction of suitable iteration functions
g(x) for systems which do not have any special features such as those
of (1.4) and (1.6). We return to the original equation f(x) = 0, and
suppose that f(x) has continuous second partial derivatives in some

[x]

convex region DO' By Taylor expansion about the point x we have

£ = £y sy - <Ky sox - <2y (1.23)

where J(x) 1is the Jacobian matrix of f£(x). (Note that J(x), without
subscript, denotes the Jacobian of the original function £(x) through-
[%]

out.) Suppose x is close to @, then putting x = a gives the

approximate equation
J(X[k])((} - X[k]) ~ —f(x[k]). (1.24)

This leads us to define the basic Newton iteration for solving £(x) = 0,

L Gy e Ry ) s, 1, 2, L 25y
[k])

To use the method in this form, J(x must be non-singular for all

x[k]. If x[o]

to prove convergence with some additional conditions, but the question

is in the neighbourhood of the root, it is fairly easy

of the behaviour of the iteration from a general starting point is much
more difficult.

THEOREM 1.4. Convergence of Newton's Method: If the convex region D0
contains a solution o of f(x) =0, and if [J(x)]_1 and the second
derivatives of f(x) exist and are bounded in DO’ the Newton iteration

converges quadratically for x[k] sufficiently close to a, that is,

”x[k+1] _ g” = o ”x[k] _ 9”2) . (1.26)

The proof is given by Collatz (1966, p.292).

This result is about the local convergence of (1.25), assuming that
the root is known to exist. If we want to prove the existence of a root
in Do, more conditions on £(x) are required.

Sufficient conditions for the Newton iteration (1.25) to converge
to a solution o of (1.2) are given by the Newton-Kantorovich theorem.
We state the version of the theorem given in Ortega (1972). This is not

as general as the version in Chapter 3, but will adequately illustrate



the conditions of the theorem.
THEOREM 1.5 (Ortega (1972), p.155). Assume that f: R+ R is differen-

tiable on a convex set D0 and that

o) - 3l < vll=xyll (1.27a)
for all x, y e DO' Suppose that there is an x[o]e D0 such that
Noa™Hit <s (1.27b)
”[J(X[O])]_lf(x[o])ll £ (1.27¢)
and
B = Byn < j.

Assume that
S = {x:||x-x[0]]] g t*} c D,

= L (1-(1-20) b
By ’

1 :
Then the iterates x[k+ ], k =0,1,..., given by (1.25), are well defined
and converge to a solution o of (1.2) in S.
Proof. We reproduce the proof of Ortega (1972), but omit some of the

details by referring to this work. We have

1360-3GN ) s vllx=lM| € yex < 178,

for any x € S. Hence, by the Banach lemma (Ortega (1972), p.32), J(x)

is nonsingular, and

B

lio™ ) ¢ ———Eeer,
1-gy [|x-x 1

Consequently, the Newton function

g(x) = x - [T

is well-defined on S and if x, g(x) € S, then

-1 Bll£GN||
llg(sx))-g) || = [ [3(gGxN] £g&x) || < o] , x, gx) e 8S.
1-gy [|x!-g 0 ||
But
NE@@GEN ] = [|£E))-£x)-IJ&) (g(x)-x) || < v |lgx)-x|?,

where the inequality follows from the Lipschitz continuity of J(x) (see
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Ortega (1972), section 8.1.5).
Hence,

Byl g (x)—x]| 2
lle(g(x))-g(x) ]| < o] ) (1.28)
21 -8y [|[xM =g |

We now define the scalar iteration

s K12 K]
JRe] g 2P m e

th[k] -1

01—,

It can easily be shown that this scalar iteration is Newton's method for

the quadratic ¢(t) = i8yt2 - ¢+ + n, whose smaller root is ¢*.

q(t)

Figure 1

It follows from this observation that the sequence {t[k]} is well-
defined, monotonically increasing, and converges to t*.
The significance of the sequence {t[k]} is that it is a majorising

{x[k]}:

sequence for the sequence
[PLGEE R0 TP () I 1 0,1,...

This result can be proved inductively using inequality (1.28) (see Ortega
(1972)); by a simultaneous induction it can be shown that x[k+1] €9,

k =0,1,... . Hence, for any k > 1 and p3>1,
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(x5 - () 20 I L N L R O

1

I~

T

and since t[k] > t* as k > =, {t[k]} is a Cauchy sequence. Hence
{x[k]} is a Cauchy sequence which, by the closure of 5 has a limit
aeS.

But
lealDI = Hoalh el D) ¢ glaath ) it

and since |lx[k+1]-x[k]ﬂ >0 as k > », and J(x) 1is bounded for
x e S, it follows that
f(x[k]) >0 as k > =,

Finally the continuity of f implies that f(a) = 0.

It is interesting to consider the significance of the conditions of
the theorem. The Lipschitz continuity condition (1.27a) is simply a
smoothness condition on the function £(x) on the convex set DO' This
smoothness condition, together with the bound (1.27b), guarantees that
the Jacobian is nonsingular on the set S and hence that the Newton
iteration is well-defined on this set. Finally condition (1.27¢), which

can be rewritten as

||X[1] _ X[o]ll £ T,

s 1 . 4 s
ensures that the second iterate x[ ] € S, hence starting the inductive

proof of the theorem.

1.4. DAMPED NEWTON METHOD

Theorem 1.5 provides sufficient, but not necessary, conditions for
the convergence of Newton's method. Even when the conditions are not
satisfied, which in practice is often the case, the method may nonetheless
converge. The probability of convergence from starting points not satis-
fying the conditions of Theorem 1.5 is improved if a line search is
incorporated in Newton's method. This line search ensures that each
iteration of the resulting damped Newton method reduces some norm of the

function f(x). The method is given by

x[k+1] = x[k] + r[k]p[k], k=0;1y000, (1.29)
where
J[k]p[k] - _f[k]’ (1.30)
and r[k] is chosen so that, for example,



