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PREFACE

'Although all the first beginnings of things~#fe~ig
motion, the sum total seems nevertheless/to abide im\

3 1
supreme quietude."r . sive (04 40 B0 { 'DéRerum Héstilga '

The use of n.m.r. techniques in materials, sciehcey sof1d-state
physics, and chemical physics has progressad consideTably dur-
ing the last two decades. By their nature, most n.m.r. experi-
ments represent rather indirect probes to gain information on
static and dynamic microscopic properties of solid, liquid, and
gaseous materials. Therefore, to interpret n.m.r. experiments
in terms of the underlying microscopic events which determine
the n.m.r. relaxation behaviour, considerable theoretical
efforts are required.

In the past, many of the necessary theoretical concepts have
been developed by experimentalists. This has the advantage that
the basic concepts and models have Leen formulated in a lan-
guage easily comprehensible to those for whom the theory is
finally developed; namely, for the experimentalists. The dis-
advantages of this development lie in the apparent conflicting
diversity of the different theoretical concepts and the variety
of different experimental techniques developed.

As a theorist, I have always considered the variety of ideas
as a challenge to find a more unified concept which would allow
me to bring some order into the manifold of theoretical approa-
ches used, which are conflicting in some respects and compat-
ible in other ways. However, as Professor Alfred Seeger once
pointed out to me, for good communication between theorists and
experimentalists to be possible, both have to speak the same
language. He reminded me that the word 'theory' derives from
the Greek word 'Sewpia', which means 'overview' or understand-
ing from a superior point of view, perhaps what the Germans
call 'Weltanschauung'. In the original sense of the word
'theory',-nuclear magnetic resonance in solids represents an
ideal playground for a theorist trying to achieve a comprehen-

sive understanding of the basic physical concepts applied in a
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field in which, as in not too many other areas of physics, ex-
perimental and theoretical efforts may be so closely correlated.
Keeping in mind this point of view, I wrote this book mainly
for the experimentalist who is struggling to decide which kind
of theoretical approach to apply to interpret his experimental
results. In developing a language and a formalism which com-
bines both intuitive and more formal theoretical concepts, my
final goal was to encourage more physicists to adopt some of
the extremely versatile n.m.r. techniques as a probe to gain a
more microscopic picture of the static and dynamic properties
of atoms, defects, and molecules in, for example, crystals.

In the past, the spin-temperature concept — a rather intui-
tive approach — has proved to be extremely fruitful in bringing
some degree of order into the microscopic interpretation of a
variety of different n.m.r. experiments performed in solids and
liquids. However, because of the great number of different
physical situations dealt with in these experiments, several
apparently different types of spin-temperature theories have
been developed. By reviewing the different approaches, a rather
general spin-temperature formalism is developed in this book
from which the different well known versions (which are restric-
ted to particular experimental regimes) may be obtained as
special cases. Since two weakly-coupled quantum systems may not
interchange energy unless their interaction fluctuates, any
kind of spin-temperature theory is only capable of describing
the effects of 'lattice'-induced motions on the nuclear-spin
system but not the static properties of matter. I shall there-
fore concentrate on situations in which, because of the motion-
induced time dependence of the spin-—lattice coupling, energy is
exchanged between the spin system and the 'lattice'. Using the
nuclear-spin system as a probe, we are able to gain microscopic
insight into the mechanisms that allow atoms, molecules, point
defects, dislocations, conduction electrons, etc. to move.

This book consists of four major parts. In Part 1, the basic
interactions of spins with each other and with other degrees of
freedom in a liquid or solid material are discussed. The basic
ideas and assumptions underlying the spin-temperature concept
are also reviewed and extended.

Part 2 begins with a summary of the basic assumptions common
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to all theories of motion-induced nuclear-spin relaxation. As
an example, the early theory of Bloembergen, Purcell, and
Pound ('BPP theory') is used to illustrate how these basic
assumptions affect the nuclear spin—lattice relaxation beha-
viour (Chapter 4). In Chapters 5, 6, and 7, the three most
fundamental theories of nuclear-spin relaxation (Kubo-Tomita,
Bloch—Wangsness—Redfield, and Hebel-Slichter theories) are re-
viewed from a common point of view. Part 2 is concluded by a
comparison of and synthesis from these theories. This leads to
the formulation of a rather general type of nuclear-spin-
relaxation theory which includes the relaxation equations in a
'rigid lattice' and from which the usual theories of motion-
induced nuclear-spin relaxation may be derived as special cases.
As a limiting case of the latter, a unified spin-temperature
theory of motion-induced nuclear-spin relaxation may be formu-
lated (Chapter 8).

Throughout Part 2 neither the spin nor the spin-lattice in-
teraction Hamiltonian had to be specified. Except for those
theories which explicitly assume the existence of a spin tem-
perature, the relaxation theories reviewed are of a very general
nature and apply to relaxation processes in many areas of
physics (most of which do not involve spins at all).

In the second half of this book the consequences of the
'unified spin-temperature theory' of Chapter 8 on a variety of
commonly encountered physical situations are developed. As
illustrated here, in effect all correlation-function expressions
for T, and Tlp follow from a single starting equation which is
practically identical to the Hebel-Slichter equation. This leads
to the development of a fairly comprehensive formalism for the
derivation of correlation-function expressions for the nuclear-
spin-relaxation behaviour. As demonstrated in some detail,
laboratory and rotating-frame relaxation properties may there-
fore be determined - in completely identical manners. In addition,
the relaxation rates in the limiting 'ultra-slow motion' and
'motionally narrowed' regimes, respectively, are found to follow
quite naturally as special cases from our general starting ex-
pression.

In Part 3, the relaxation due to fluctuating dipolar and

quadrupolar interactions in systems containing one or two spin
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species and in molecular crystals or liquids is investigated.
The results of Chapters 9, 10, and 12 are applied to self dif-
fusion in cubic crystals for which the dipolar and quadrupolar
'lattice' correlation functions are well known and particularly
simple. Explicit analytical and numerical results for the en-
tire relaxation behaviour (temperature, field, and orientation
dependence of Tland Tlp) may thus be obtained.

Finally, Part 4 focuses on the relaxation properties associa-
ted with fluctuating hyperfine interactions. Owing to limited
space, only the Fermi-contact interaction in metals or semi-
conductors and the relaxation due to fluctuating anisotropic
chemical-shift interactions in non-cubic crystals are investi-
gated. Common to the two related Hamiltonians is their linear
nuclear-spin structure which is contrasted with the bilinearity
of the dipolar and quadrupolar Hamiltonians. In spite of these
differences it is found that the basic relaxation properties
associated with fluctuating hyperfine interactions are very
similar to those arising from time-dependent dipolar and quad-
rupolar interactions.

By developing both a language and the underlying formalism
needed for the theoretical interpretation of n.m.r. experiments
on the internal dynamical processes in solids, liquids, and
gases, I hope that more experimentalists will in the future be
inspired to use some of the very versatile n.m.r. techniques to
investigate the microscopic dynamics of atoms, molecules, de-
fects, and electrons in a great variety of materials.

I am grateful for the extremely helpful criticism and feed-
back which I have received from Professor Otmar Kanert of the
University of Dortmund. During his sabbatical visit to the
University of Utah, I benefited in numerous ways from his
stimulating interest in this book and from his insistence on
clarity and the use of a language familiar to experimentalists.
During the two years in which I have focused a considerable
share of my research efforts on this book, I have had two
opportunities to test and improve its teachability: I am grate-
ful for invitations from the 'Troisiéme Cycle de la Physique
en Suisse Romande' to present a summer course in Lausanne in

1975, and from the Universidad Central de Venezuela to teach
a course on the subject during the fall of 1976.

Salt Lake City, D.W.
February 1977



NOTATION

Agg) dipolar spin operators

A, B spin operators

A symmetrical second-rank tensor

89) dipolar spin operators for different spin species
Irts I and §

c Curie's constant

Cd concentration of point defects in a crystal
e elementary charge

E = (30) energy (expectation value of Hamiltonian ()
Fég) dipolar (geometrical) lattice functions
G(q)(t) 'lattice' correlation function

H0 external constant magnetic field

H1 external rotating field

H internal local field

Hy dipolar local field

HQ quadrupolar local field

ﬂb dipolar-interaction Hamiltonian

Kex exchange-coupling Hamiltonian

Kind indirect magnetic-dipole Hamiltonian

ML 'lattice' Hamiltonian

ﬂisd pseudo-dipolar interaction Hamiltonian

ﬂ}sex pseudo-exchange interaction Hamiltonian

ﬂb quadrupolar Hamiltonian

Mé Hamiltonian of the completely isolated spin system

ﬂgL spin—lattice interaction Hamiltonian

Hi Zeeman Hamiltonian

I, S spin quantum numbers for two-spin systems
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NOTATION
total angular-momentum operator
exchange integral
dipolar spectral density (Fourier transform of G(q)(t)
Knight-shift anisotropy tensor
nuclear magnetization
nuclear quadrupole moment
quadrupolar spin operators
quadrupole tensor
internuclear vector
absolute temperature
spin-lattice relaxation time
spin-lattice relaxation time in the rotating frame
spin-spin relaxation time
cross-relaxation time
thermal-mixing time
electric field gradient (e.f.g.) tensor
Zeeman
gyromagnetic ratio
Kronecker's symbol
asymmetry parameter of an electric field gradient
off-resonance angle
thermal-equilibrium 'lattice' temperature
spin temperature
magnetization operator

hermitian density operator of the entire system
(spins_plus 'lattice')

density matrix of spin system
correlation time
mean time between successive jumps of an atom

mean time between successive jumps of a point defect
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Xeq thermal-equilibrium or 'Curie' susceptibility
wn(t) wave function of a spin n

w angular precession frequency

W, Larmor angular precession frequency due to H0

wy Larmor angular precession frequency due to H1

wp precession frequency in the dipolar local field
Wy local-field precession frequency

©q precession frequency in a quadrupolar local field
( %,¢ solid-angle average

Subscripts and superscripts

d trans formed

® interaction representation
* complex conjugate

(0) secular part of Hamiltonian
€ correlation

er cross relaxation

CS chemical shift

D dipolar

e electronic

eq thermal equilibrium

ext external

FC Fermi contact

HF hyperfine

ind induced

int internal

L 'lattice'

(n) non-secular part of Hamiltonian

orb orbital
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NOTATION

quadrupolar

rotating frame

radio frequency
doubly rotating frame
rigid lattice

spin

spin-lattice
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