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Chapter 1

INTRODUCTION

This book is devoted to an important and influential geometrical structure
called the Voronoi diagram, whose origins in the Western literature date
back to at least the 17th century. In his work on the principles of
philosophy [257], René Descartes (Renatus Cartesius) claims that the solar
system consists of vortices. His illustrations show a decomposition of space
into convex regions, each consisting of matter revolving around one of the
fixed stars; see Figure 1.1.

Even though Descartes has not explicitly defined the extension of these
regions, the underlying idea seems to be the following. Let some space, and
a set of sites in this space be given, together with a notion of the influence
a site p exerts on every location z of the space. Then the region of the
site p consists of all points = for which the influence of p is the strongest.
Figure 1.2 illustrates the simplest case: Sites are points in the plane, and
influence is modeled by Euclidean distance. The regions of the sites are
convex polygons covering the entire plane.

‘The world is full of Voronoi diagrams’...this phrase seems true
wherever we look, and it is the intention of this book to lead the reader
into the fascinating realm of Voronoi diagrams. Whether we look to the
sky, where gravitational fields structure the macrocosmos, or consider the
spread of animals in their habitats, simply watch the interference pattern
of waves on a quiet pond, or even peer deep within the structure of matter,
we will find a Voronoi diagram-like pattern which structures the world.

Indeed, this fundamental concept has emerged independently, and
proven useful, in various fields of science. Most applications have their own
notions of ‘space’, ‘sites’, and ‘influence’, resulting in Voronoi diagrams
whose structures differ greatly. Understanding their properties is the key
to their effective application and to the development of fast construction
algorithms. Various names have been given to Voronoi diagrams, depending
on the particular domain, such as Thiessen polygons in geography and
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Figure 1.1. Descartes’ decomposition of space into vortices.

meteorology (Thiessen [683], 1911), domains of action or Wirkungsbereiche
in crystallography (Niggli [562], 1927), Wigner-Seitz zones in chemistry and
physics (Wigner and Seitz [705], 1933), Johnson-Mehl model in mineralogy
(Johnson and Mehl [433], 1939), and medial azis transform in biology and
physiology (Blum [134], 1973).

Voronoi diagrams are important to both theory and applications, and
play a unique interdisciplinary role. Several thousands of research articles
have been published about them in different communities. Results thus
dispersed might not always be widely known, and might fade into oblivion.
While no single book can present all known results on Voronoi diagrams and
their relatives, our aim is to thoroughly cover the structural and algorithmic
viewpoints. In addition to being a versatile space partitioning structure,
Voronoi diagrams are also aesthetically pleasing, and many people feel
attracted to them, even regarding their artistic aspects. We have tried to
communicate this quality in this book.
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Figure 1.2. A Voronoi diagram of point sites in the Euclidean plane.

One and a half centuries ago, the mathematicians Carl Friedrich
GauB8 [353] (1840) and Gustav Lejeune Dirichlet [280] (1850), and later
Georgi Feodosjewitsch Voronoi [693, 694] (1908) were the first to formally
introduce this concept. They used it to study quadratic forms: Here the
sites are integer lattice points, and influence is measured by Euclidean
distance. The resulting structure was called a Dirichlet tessellation or
Voronoi diagram, which became its standard name today.

Voronoi [693] also considered the geometrical dual of this structure,
where any two (point) sites are connected whose regions have a boundary in
common. Later, Boris Delaunay (Delone) [253] obtained the same structure
by defining that two sites are connected if they lie on a circle whose interior
contains no other sites. After him, the dual of the Voronoi diagram was
denoted Delaunay tessellation or Delaunay triangulation.

With the advent of modern computers, the important role of Voronoi
diagrams in structuring, representing, and displaying multidimensional
data was rediscovered by computational geometers. Voronoi diagrams are
a well-established geometric data structure nowadays. About one out of
sixteen articles in computational geometry is dedicated to them, ever since
Shamos and Hoey [637] introduced them to the field. In the two-dimensional
case, for instance in the Euclidean plane, the Voronoi diagram does not
require significantly more storage than does its underlying set of sites,
and thus captures the inherent proximity information in a comprehensive
and computationally useful manner. Its applications in more practically
oriented areas of computer science are numerous, for example, in geographic
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information systems, robotics, computer graphics, and data classification
and clustering, to name a few.

Besides its direct applications in diverse fields of science, the Voronoi
diagram and its dual can be used for solving numerous, and surprisingly
different, geometric and graph-theoretical problems. Due to their close
relationship to polytopes and arrangements of hyperplanes in higher
dimensions, many questions (and solutions) from convex and discrete
geometry carry over to Voronoi diagrams. Moreover, the Delaunay
triangulation, seen as a combinatorial graph, is related to several prominent
connectivity graphs. We discuss various respective applications, often
including alternative solutions for their special merits. Along the way, we
give a state-of-the-art account of the literature on Voronoi diagrams in
computational geometry. This fills the need for a technically sound and
well-structured book, which is up-to-date on the theory and mathematical
applications of Voronoi diagrams.

The reader is invited on a guided tour of gently increasing difficulty
through a fascinating area. Insight will be given into the ideas and principles
of Voronoi diagrams, without the baggage of too much technical detail.
When later faced with a geometric partitioning problem, readers should
find our book helpful in deciding whether their problem shows Voronoi
characteristics and which type of Voronoi diagram applies. They might find
a ready-to-use solution in our book, or follow up the links to the literature
provided, or they might work out their own solution based on the algorithms
they have seen. The book targets researchers in mathematics, computer
science, natural and economical sciences, instructors and graduate students
in those fields, as well as the ambitious engineers looking for alternative
solutions. A brief discussion of algorithmic implementation questions, and
of currently available geometric computation libraries, is included in the
final chapter. Since human intuition is aided by visual perception, especially
where geometric topics are concerned, the diversity and appeal of Voronoi
diagrams is liberally illustrated with appropriate figures.

The presentation and structure of this book strives to highlight the
intrinsic potential of Voronoi diagrams and Delaunay triangulations, which
lies in their structural properties, in the existence of efficient algorithms
for their construction, and in their relationship to seemingly unrelated
concepts. We therefore organized topics by concept, rather than by
application.

Another book which nicely complements ours, but from a much
more applied perspective, is by Okabe et al. [571] (2000). It contains a
wealth of applications of Voronoi diagrams, several of them not (or only
marginally) covered here, like Poisson Voronoi diagrams and locational
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optimization problems. The more than one thousand and six hundred
references listed in [571] constitute a bibliography still quite distinct from
ours — demonstrating once more the broad scope of Voronoi diagrams. In
addition, the book by Gavrilova [354] (2008) contains a collection of articles
on diverse applications in the natural sciences, with numerous citations. A
careful study of Delaunay triangulations, mainly oriented towards their
algorithmic applications in surface meshing and finite element methods,
is contained in George and Borouchaki [356] (1998). The recent book on
Delaunay mesh generation by Cheng, Dey, and Shewchuk [202] (2013) takes
into account the various new developments to date.

Shorter and early treatments of Voronoi diagrams and Delaunay
triangulations, closer to the spirit of the present book, are the surveys
by Aurenhammer [93], Fortune [343], and Aurenhammer and Klein [100].
Also, Chapters 5 and 6 of Preparata and Shamos [596], Chapter 13 of
Edelsbrunner [300], Chapters 7 and 9 of de Berg et al. [244], and Part V of
Boissonnat and Yvinec [151] could be consulted.

Although interesting and insightful in its own right, we decided
to refrain from a detailed historical treatment of Voronoi diagrams in
this book. The interested reader is encouraged to enjoy the historical
perspectives presented in [93], and later in more detail, in [571].

We start in Chapter 2 with a simple case — the Voronoi diagram
and the Delaunay triangulation of n points in the plane, under Euclidean
distance. We state elementary structural properties that follow directly
from the definitions. Further properties will be revealed in Chapter 3,
where different algorithmic schemes for computing these structures are
presented. In Chapter 4 we complete our presentation of the classical two-
dimensional case, with advanced properties of planar Voronoi diagrams and
Delaunay triangulations. We next turn to generalizations, to sites more
general than points in Chapter 5, and to higher dimensions in Chapter 6.
Generalized spaces and distances are treated elaborately in Chapter 7.
In Chapter 8, important geometric applications of the Voronoi diagram
and the Delaunay triangulation are discussed, along with respective related
structures and concepts. The reader interested mainly in these applications
can proceed directly to Chapter 8, after Chapter 2 or 3. Chapter 9
presents relevant topics which, for clarity of exposition, are best described
separately. Chapter 10 offers alternative solutions in high dimensions,
where the attractiveness of Voronoi diagrams is partially lost due to
their high combinatorial and computational worst-case complexity. Finally,
Chapter 11 concludes the book, gives a short discussion of algorithmic
implementation issues, and mentions some important open problems.






Chapter 2

ELEMENTARY PROPERTIES

In this chapter, we present definitions and basic properties of the Voronoi
diagram and its dual, the Delaunay triangulation.

Only the simplest case is considered — point sites in the plane under the
Euclidean distance. Yet, the properties discussed are of general importance,
as many (but not all) of them will carry over to other types of Voronoi
diagrams and their relatives, presented later in this book.

2.1. Voronoi diagram

Let us start with giving some standard notation and explanations.
Throughout this chapter, we will denote by S a set of n > 3 point
sites p,q,7,... in the Euclidean plane, R?. For points p = (p1,p2) and
z = (x1,x2), their Euclidean distance is given as

d(p,x) = \/(p1 — 1) + (p2 — 72)2.

The straight-line segment that connects two points p and g will be written
as pq, or sometimes just as pq.

For p,q € S, let B(p,q) be the bisector of p and ¢ (also called their
separator), which is the locus of all points in R? at equal distance from
both p and ¢. B(p, q) is the perpendicular line through the midpoint of the
line segment pg. It separates the halfplane

D(p,q) = {z | d(p,z) < d(q,x)}

closer to p from the halfplane D(q, p) closer to q.

We next specify maybe the most important notion in this book. The
Voronoi region of p among the given set S of sites, for short VR(p, S), is
the intersection of the n — 1 halfplanes D(p, q), where g ranges over all the
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other sites in S. More formally,

VR(p,S)= () D).
qES, q#p

VR(p, S) consists of all points x € R? for which p is a nearest neighbor site.
As being the finite intersection of halfplanes, which are convex sets in R?,
the region VR(p, S) is a convex, possibly unbounded polygon in the plane.
Different Voronoi regions are interior-disjoint, as they are separated by the
bisector of the two sites that own them.

(A set M in R? or in general d-space R?, is conver if it contains,
with each pair of points &,y € M, the line segment Zy. Set M is called
bounded if there exists a circle, or sphere, respectively, of finite radius which
encloses M. Otherwise, M is unbounded. We say that M is a closed set if M
contains its (topological) boundary. M minus its boundary is an open set,
called the interior of M.)

Definition 2.1. The common boundary part of two Voronoi regions is
called a Voronoi edge, if it contains more than one point.

The Voronoi diagram of S, for short V(S), is defined as the union of
all Voronoi edges.

Endpoints of Voronoi edges are called Voronoi vertices; they belong to
the common boundary of three or more Voronoi regions.

If a Voronoi edge e borders the regions of p and ¢ then e C B(p,q)
holds. That is, V(S) is a planar straight-line graph whose edges emanate
from Voronoi vertices. V(S) is sometimes also referred to as the Voronoi
edge graph in the literature.

(Recall that a graph consists of a set of vertices, which in principle could
be any objects, and a set of edges that pair up certain vertices, in order
to display a relation between the two objects. A graph is called planar if
it can be geometrically embedded in the plane without edge crossings. For
sources on (combinatorial) graphs and graph-related algorithms, the books
by Diestel [275], Gibbons [363], or West [703] may be consulted.)

There is an intuitive way of looking at the Voronoi diagram V(S). Let
x be an arbitrary point in the plane. We center a circle, C, at z and let
its radius grow, from 0 on. At some stage the expanding circle will, for the
first time, hit one or more sites of S. Now there are three different cases.

Lemma 2.1. If the circle C' expanding from point x hits exactly one site,
p, then x belongs to the interior of region VR(p,S). If C hits exzactly two
sites, p and q, then x is an interior point of a Voronoi edge separating the



