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PREFACE

The second volume of Vibro-Acousties includes eight chapters. As in the
first volume, each chapter ends with a number of problems. The solutions
are given in a separate volume, which also contains a summary of some of
the most important governing equations from the first two volumes.

A number of measurement results are presented in Volume II. Most
of these measurements could not have been performed without the expert
help ot Fritiof Torstensson and Arne Jagends at Chalmers, Knut Ulvund
at DNV and Kent Lindgren and Danilo Prilovic at KTH. I also gratefully
acknowledge the pioneering work by Prof T.Kihlman, who introduced the
field of vibro-acoustics in Scandinavia.

I would like to express my gratitude to Hector Valenzuela, Edoardo
Piana and in particular to Benedetta Grassi for their untiring and very
efficient work on preparing all the figures.

Any comments or questions on the text are most welcome. Contact us
by email, address andersc.nilsson@gmail.com and liubl@mail.ioa.ac.cn.

Anders Nilsson
Genova, Italy, March 2013
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Chapter 9

HAMILTON’S PRINCIPLE AND SOME
OTHER VARIATIONAL METHODS

Many problems in mathematical physics and thus in vibro-acoustics cannot
be solved exactly. However, a variational technique can often be used to suf-
ficiently well formulate the equations governing the response of a structure
excited by external forces. The technique ensures that errors are minimized.
Variational techniques are excellent tools for solving dynamic problems for
which exact solutions cannot be formulated.

The widely used Finite Element Method, is based on Hamilton’s prin-
ciple, which is a very powerful variational method. The principle can be
proved based on Newton's law of motion. Inversely Newton’s law can be
derived using Hamilton’s principle. However, Hamilton’s principle is much
more general than Newton’s law and for this reason, it has survived the
revolution in mechanics brought by Einstein.

The key problem for the successful application of any variational tech-
nique is the mathematical formulation of the kinetic and potential energies
of a system. This formulation also requires a physical understanding of the
mechanisms governing the motion of a system. This can be illustrated by
considering two different types of three layered beams. In one case, the
structure consists of a beam with a constrained viscoelastic layer. For the
vibrating beam, the shear forces in the viscoelastic layer along the axis of
the beam are of importance. In the other case, the core of a three-layered
beam consists of a honeycomb structure. In this case, the shear forces per-
pendicular to the axis of the beam are of major importance for the deflection
of the beam. For the two cases, the energies are modelled in different ways
resulting in two different equations as discussed in Sections 9.3 and 9.4. In
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each case, the results are only valid as long as the basic physical assumptions
are satisfied.

Hamilton’s principle is in this chapter used to derive the equations, which
up to certain frequencies govern the flexural vibrations of thick beams or
plates and of cylindrical shells. The Lagrange and Garlekin methods are also
discussed. The longitudinal vibration of thick beams or rods is examined in
Chapter 10 in connection with discussions on various models describing the
axial vibration of cylindrical rubber mounts.

9.1 Hamilton’s principle

The most general formulation of the law governing the motion of a me-
chanical system is Hamilton’s principle. In formulating the principle, it is
assumed that the potential energy U is a known function of some generalized
coordinates gi,¢q2,--- ,q, and time . The potential energy is symbolically
written as ¥ = U(q,t). The kinetic energy 7 of the same system is also
assumed to be a known function of the coordinates q1,q2, - , gn, the ve-
locities 1,492, ,q, and time t. Thus, the kinetic energy is written as
T =T(q,4,t).

The Hamilton’s principle states: between two instants of time, £; and to,
the motion of a mechanical system is such that for the coordinates defining
the system to be described by the functions g;(f) the integral

t2
J =J (T —v)dt (9-1)

t
is stationary. It assumed that the coordinates or displacements of the system
at t = t; and ¢t = t» are known.
Hamilton’s principle can also be written in the form

ta
5J(T—vﬁuzﬂ (9-2)

ty

The expression states that the variation of the integral is zero when the
system is given a virtual displacement if the virtual displacement is zero
at t = t; and t = t9. During time period t; to to the system will move in
such a way that the time average of the difference between the kinetic and
potential energies is an extrenum or in most cases a minimuim.

The difference between the kinetic and potential energies is called the
Lagrangian of the system and is defined as (or sometimes as — ()

L=T-v (9-3)
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The influence of an external field or force can also be incorporated in the
variational expression. By defining the potential energy for the conservative
external forces as A and by including this in the original expression (9-2)
Hamilton’s principle reads

5 rz (T —v— A)dt =0 (9-4)

ity
For a conservative (no losses) and external force described by the vector

F' acting on a particle and moving the particle along a path given by the

vector s the potential energy of the external force is reduced and giving the
energy as

A=— [Fds (9-5)

Hamilton’s principle as a tool for deriving the governing equations describing
the motion of a simple beam and some more complicated structures are
discussed in the following sections.

One proof of Hamilton’s principle can, as suggested by Petyt in ref.
[63], be illustrated by considering a simple system shown in Fig. 9-1. Let
the vector F' describe a conservative force acting on the point mass m. The
work W done by a conservative force, defined by the vector F', when moving
the mass m from a position r; to r5 is independent of the path taken. The
work W done along any path s is

WzJFds

During the process the mass or the system has lost the potential energy v,
thus v = —W. The conservative vector force F' can thus be expressed as a

T

Ty

Fig. 9-1 A simple mass system moved by a force between two positions
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function of the potential energy ¥ of the symbol

F = —grad v (9-6)

Consider now a simple mass m subjected to a conservative force defined by

the vector F'. According to the principle of virtual displacement, it follows
that

F-or—m#- or=0 (9-7)
The vector r defines the position of the mass. The virtual work W = F-ér
done by the conservative force is also given by U = —F' - §r when v is the

potential energy of the system. Considering this, eq. (9-7) is written as
OU = —mi* - dr (9-8)

The kinetic energy 7 of the mass or in fact the system is 7 = m - 7%/2.
Thus

5T = m -7+ 67 (9-9)
By subtracting the expression (9-8) from (9-9) the result is
0T —0U=m-7-0r+mr-or = % (ma - or) (9-10)

Integration with respect to time from £ to t5 gives

Lo
L (6T — §v) dt = [mi- - 6r]'2 (9-11)

Assuming that the virtual displacement or is equal to zero for ¢t = ¢; and
t = to it follows that

2
) [ (7 —v)dt =0
t1
This is Hamilton’s result as given by eq. (9-2).

Hamilton’s principle is discussed in for example refs. [58], [77] and [78].

9.2 Flexural vibrations of slender beams

The flexural vibrations of “thin” or slender beams were discussed in Chapter
7(Volume I). Again, a “thin” beam under flexure is considered to demon-
strate how Hamilton’s principle can be used to derive the equations govern-

ing the motion of the beam as well as to formulate the boundary conditions
of the beam.
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A simple homogeneous and slender beam is shown in Fig. 9-2. The
bending stiffness of the beam is I’ and it’'s mass per unit length m’. The
beam is extended along the z-axis from # = 0 to & = L and is excited by
a force F'(x,t) per unit length. The resulting displacement of the beam is
w(x,t) defined positive, as the force, along the positive y-axis. The forces

and bending moments at the boundaries are Fi, Fo, M} and My as defined
in Fig. 9-2.

F'(,t)
C{j*f 1111 1 TT_’TTFF"T‘:\> J
M,
M, lFI ‘ Tm[_.i: t) F, |

Fig. 9-2 Forces and bending moments acting on a beam

The potential energy v induced by bending is per unit length of the
beam given by eq. (3-84) as

D’ (Sgw)2
u=—=—-(=—

Ox?

The kinetic energy per unit length of the beam is

m/ Aw \ 2
h=5 (5{)

The potential energy A, per unit length induced by the external force F” is
according to the definition (9-5) given by

L
Ai(t) = —-J' w(z,t)F'(z,t)dx
0
The potential energy A» induced by the external forces and moments is
Ao(t) =~ Ba(Ou(L,§) + Fi 0w, + Ma(0) [ 52| (o) |32
Ox x=1 Ox =0
L
=2 - [Fw—M-a—w] (9-12)
ox |,
The total potential energy invoked by all external forces is consequently
L Ow L
A(t) = —[ w(z,t)F'(z,t)dz — [Fm - M. -—} (9-13)
0 gz |
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According to Hamilton’s principle the kinetic and potential energies should
satisfy by inserting egs. (9-4), (9-5). Thus

Lo ta
aj (T —v— A)dt = aj

t1 t1

dt [—A + r dz(7; — U;)] =0 (9-14)
0

By inserting eqs. (9-4), (9-5) and (9-12) in eq. (9-13) the result is

e [k fm (ow\® D [w\® K
o), |l dﬁ“{g‘(at) 7 (o) e

=

P L
+ [Fw-M- %] — 0 (9-15)
. 0

Effecting the variation the expression (9-15) is written as

b2 b ow\ [ ddw w\ [ 0*6w
/ j i o o .l" = N / ‘
[, ael], s dm (5) () 2 () () + Fou |

t2 5w ™
+J dt [Fﬁw-M- —""—”-] —0 (9-16)
t ox 0

Next, integration by parts is carried out. For simplicity, each part of the

integrand is treated separately. The first part of the double integral of (9-16)
gives

L 2 Ow Odw L ow k2 t2 0w
X = d dt-m’ = d '—35 — dt - m' ——4
: J.n I[tl "ot ot L : [m ot w] f L "o

However, as required, the displacement w is fixed at the initial and final time
limits. Thus dw = 0 at t = t; and £ = t2. The integral X, is consequently
reduced to

t2 2
X = —[ dt - rnf%t—lsﬁm (9-17)

3

The second part X5 of the integral (9-16) is integrated by parts as
E2 ’ 0w [ *w
Xo=| di | =D | —=
.=, ae{], ae[-0(52) (5)1}
t2 9w dow
=—D'| dt| | == ) | =—
1, (&%) (57




Chapter 9 Hamilton’s Principle ... Variational Methods 7

Fw L ; L M w
- (m) 6;_1}] —DJ d;l',*J' dt- m - Ow (9-18)

0 0
By introducing the expressions (9-17) and (9-18) in eq. (9-16) the result is

L2 = J*w , 04w ,
Ll dtL dxzow [—m 5z D oy, + F]

o , Fw ddw ( _,0%w 8
+ ) di lﬁm (D 573 +F) ~ B (D 3:.22 M)] =0 (9-19)

0

.

For the result to be zero for any dw or ddw/dzx, it follows that the expressions
inside the brackets must be zero. Setting the expression inside the first
bracket equal to zero gives

9w , 0% w
D'—- — = F -
I +m' YD (9-20)
This is the equation of motion of a slender and homogeneous beam in flexure
as already discussed in Section 3.7.

By setting the second square bracket equal zero, the boundary conditions
for t = 0 and x = L are obtained as

33
dw (D' 0:1:3 ) = () (9-21)
dow [, 0%w -
P (D 3:52 ) = () (9-22)

For the first condition (9-21) to be satisfied at a boundary, it follows that

P w

F=-D— 523 OF dw =0 (9-23)
The second condition requires
0w dow
M=-D'— —_— = 9-24
92 O oz ! ( )

The results give the expressions for force and bending moment as given by
the displacement w of the beam as already derived in Chapter 3, eqs.(3-73)
and (3-75). The conditions dw = 0 and 6(dw/dx) = 0 are equivalent to
w and Jw/dx being constant at the boundaries. For most practical pur-
poses a coordinate system can be oriented in such a way that the boundary
conditions can be written w = 0 and dw/dz = 0.



