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To my friends around the world, with-
out whose help neither this book nor
its author would be seeing the light.



Preface

This is a free translation of a set of notes published originally in Portuguese in
1971. They were translated for a course in the College of Differential Geome-
try, ICTP, Trieste, 1989. In the English translation we omitted a chapter on
the Frobenius theorem and an appendix on the nonexistence of a complete
hyperbolic plane in euclidean 3-space (Hilbert’s theorem). For the present
edition, we introduced a chapter on line integrals.

In Chapter 1 we introduce the differential forms in R™. We only assume
an elementary knowledge of calculus, and the chapter can be used as a basis
for a course on differential forms for “users” of Mathematics.

In Chapter 2 we start integrating differential forms of degree one along
curves in R™. This already allows some applications of the ideas of Chapter 1.
This material is not used in the rest of the book.

In Chapter 3 we present the basic notions of differentiable manifolds. It
is useful (but not essential) that the reader be familiar with the notion of a
regular surface in R3.

In Chapter 4 we introduce the notion of manifold with boundary and
prove Stokes theorem and Poincare’s lemma.

Starting from this basic material, we could follow any of the possi-
ble routes for applications: Topology, Differential Geometry, Mechanics, Lie
Groups, etc. We have chosen Differential Geometry. For simplicity, we re-
stricted ourselves to surfaces.

Thus in Chapter 5 we develop the method of moving frames of Elie Cartan
for surfaces. We first treat immersed surfaces and next the intrinsic geometry
of surfaces.

Finally, in Chapter 6, we prove the Gauss-Bonnet theorem for compact
orientable surfaces. The proof we present here is essentially due to S.S.Chern.
We also prove a relation, due to M. Morse, between the Euler characteristic
of such a surface and the critical points of a certain class of differentiable
functions on the surface.

As most authors, I am indebted to so many sources that it is hardly
possible to acknowledge them all. Let me at least mention that the first four
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chapters were strongly influenced by the writings of my friend and colleague
Elon Lima and the last two chapters bear the imprint of my teacher and
friend S.S. Chern.

For the present version I am indebted to my colleagues M. Dajczer, L.
Rodriguez and W. Santos for reading critically the manuscript and offering a
number of useful suggestions. Special thanks are due to Lucio Rodriguez for
his care in the camera ready presentation of the final text.

Rio de Janeiro, February 1994. Manfredo Perdigao do Carmo
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1. Differential Forms in R"

The goal of this chapter is to define in R"™ “fields of alternate forms” that
will be used later to obtain geometric results.

In order to fix the ideas, we will work initially with the three-dimensional
space R®.

Let p be a point of R3. The set of vectors ¢ — p, ¢ € R? (that have origin
at p) will be called the tangent space of R? at p and will be denoted by RZ.
The vectors e; = (1,0,0), e2 = (0,1,0), e3 = (0,0, 1) of the canonical basis
of R will be identified with their translates (e;)p, (e2)p, (e3)p at the point p.

A vector field in R® is a map v that associates to each point peR®a
vector v(p) € Rf,. We can write v as

v(p) = ar(p)er + az(p)ea + az(p)es,

thereby defining three functions ai:R3 - R, 7 = 1,2,3, that characterize
the vector field v. We say that v is differentiable if the functions a; are
differentiable.

To each tangent space Rf', we can associate its dual space (Ri)‘ which is
the set of linear maps ¢: Rf, — R. A basis for (Rg)" is obtained by taking

(dzi)p, 1 = 1,2,3, where z;: R3 — R is the map which assigns to each point
its i'" -coordinate. The set

{(dzi)p; 1 =1,2,3}

is in fact the dual basis of {(e;),} since

Ny 0T [0, ifi#]
(dzl)P(eJ) - 51‘—1 - { 1, if 1 :]

Definition 1. A field of linear forms (or an exterior form of degree 1) in
R? is a map w that associates to each p € R® an element w(p) € (RJ) w
can be written as

w(p) = a1(p)(dz1), + a2(p)(dz2), + az(p)(des),

or
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3
w= E a; dz;,
i=1

where a; are real functions in R>. If the functions a; are differentiable, w is
called a differential form of degree 1.

Now let A%(R})* be the set of maps ¢: R x R] — R that are bilinear
(i.e., @ is linear in each variable) and alternate (i.e., p(v1,v2) = —p(va,vy)).
With the usual operations of functions, the set AZ(R,SJ)‘ becomes a vector
space.

When ¢; and ¢2 belong to (Ri)‘, we can obtain an element ¢ A @y €
AZ(R‘;)‘ by setting

(01 A p2)(v1,v2) = det(p;i(v;))

The element (dz;), A (dz;), € Az(Rg)‘ will be denoted by (dz; A dzj),. It is
easy to see that the set {(dz; Adz;),, i < j} is a basis for A2(R?,)‘ (this will
be proved in a more general setting in Proposition 1 below). Furthermore,

(dz; Adzj)p = —(dzj A dzi)y, i#J,

and
(dzi A dzi), = 0.

Definition 2. A field of bilinear alternating forms or an exterior form of
degree 2 in R? is a correspondence w that associates to each p € R® an
element w(p) € A? (R?,)‘; w can be written in the form

w(p) = ai2(p)(dz1 A dz2), + ar3(p)(dzy A dx3), + azs(p)(dze A dxs),

or
w=Y ayde;Adz;, 4,j=123,
i<j

where a;; are real functions in R®. When the functions a;; are differentiable,
w is a differential form of degree 2.

We will now generalize the notion of differential form to R". Let p € R",
R, the tangent space of R™ at p and (R})" its dual space. Let Ak(RZ)‘ be
the set of all k-linear alternating maps

LN n
Ry x... xRy =R
N——
k times

(alternating means that ¢ changes signs with the interchange of two con-
secutive arguments). With the usual operations, A* (R;)* is a vector space.
Given ¢1,..., ¢k € (R})", we can obtain an element 1 A w2 A ... A i of
A*(R7)* by setting
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(p1 A2 A ... Apr)(v1,v2, ..., v) = det(pi(v;)), 4,7 =1,...,k.

It follows from the properties of determinants that @1 A2 A...Agy is in fact
k-linear and alternate. In particular (dz;,)pA(dzi,)pA. .. A(dzi,) € AF(R})*,
i1,42,...,% = 1,...,n. We will denote this element by (dz;, Adz;, A... A
d.’L‘ik )p.

Proposition 1. The set
{(dwi,/\.../‘\dx,-k)p, 1 <o < ... < Uk, iJE{l,...,n}}

is a basis for AF(R})*.
Proof. The elements of the set are linearly independent. For, if

E Ajy .4 d.’r,-l AN A d:l?,',u =10,

1 <...<iy

is applied to
(egusrsaiin)i Ji Coos iy Je'€ {Lliessyn)s
we obtain (Exercise 2)

E Qg .. ig dI“ /\.../\d:l,‘,’k (le....,ejk) = Qj,.. jx =0.
1150 <ok

We now show that if f € Ak(R;)‘. then f is a linear combination of the
form

f = Z (L2 d.’L‘,’1 /\.../\d.’l)ik.

1 <. <

For that, set

g = Z Fleipsoosy€i)dEy Ao NdTs, .

1n<...<ix
Notice that g € A*(R})* and that
g(ch ----- eik) =2 f(eu ----- Cu.)s

for all 4y,...,%. It follows that f = g. Setting f(ei,,....€i) = a4, i, We
obtain the above expression for f. O

Definition 3. An exterior k-form in R" is a map w that associates to each
p € R" an element w(p) € Ak(RZ)‘: by Proposition 1, w can be written as

w(p) = Z ai, i, (P)dzyy, A AdTy )y, 1€ {1, ),

D) O < 8
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where a;,. i, are real functions in R". When the a;, ; are differentiable
functions, w is called a differential k-form.

For notational convenience, we will denote by I the k-upla (iy,...,),
11 < ...<1k, 1 € {1,...,n}, and will use the following notation for w:
w = Z a,dz,.
I

We also set the convention that a differential O-form is a differentiable func-
tion f: R"™ — R.

Ezample 1. In R* we have the following types of exterior forms (where a;, a;;,
etc., are real functions in R*):
0-forms, functions in R?,
1-forms, a;dz; + a2dxs + aszdrs + agdxy,
2-forms, ajodzy A dxo + ayzdxy A daeg + aygdxy A dxy + aszdas A dog +
a24dxo A dTq4 + azqdzs A day,
3-forms, aj23dzi Adzo AdTs+ajoadry Adrao Adry +arzadzy Adrs Adxg +
a234dT2 A dx3 A dxy,
4-forms, aj234dxy A dzo Adxs A dxy.
From now on, we will restrict ourselves to differential k-forms and we will
call them simply k-forms.
We are going to define some operations on k-forms in R".
First, if w and ¢ are two k-forms:

w:Za;dz;, Q= Zb;dl‘],
I I

we can define their sum

w+p= Z((ll + by)dxg.
I

Next, if w is a k-form and ¢ is an s-form, we can define their exterior product
w A ¢, which is an (s + k)-form, as follows.

Definition 4. Let

w:Z(LId:EI. I=(i1,...‘ik). 1 <...<ip,

o= bydzy, J = {Jiesesdidi  Ji o £ Ja
By definition,

WA= Z(L{bJ{lfL‘] ANdzy.
1J
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Ezample 2. Let w = z1dT, + T2dzy + T3dz3 be a l1-form in R® and p =
z1dzy A dzs + dzy A dz3 be a 2-form in R®. Then, since dz; A dz; = 0 and
dz; ANdz; = —dz; Adz;, i # j, we obtain
wA @ =x2dx2 Adzy N drs + x3T1dT3 A dT1 A dT2
= (.’1311‘3 — T9)dxy Adzo A dx3.

Remark 1. The definition of exterior product is made in such a way that if
®1,...,9r are 1-forms, then the exterior product ¢; A ... A pi agrees with
the k-form previously defined by

V1A ARV, vk) = det(pi(v;)).

This follows immediately from the definition and will be left as an exercise
(Exercise 3).
The exterior product of forms in R™ has the following properties.

Proposition 2. Let w be a k-form, ¢ be an s-form and 6 be an r-form.
Then:

a) (WAP)AO=wA(pAb),
b) (wWAp)=(=D*(pAw),
c) wA(p+80)=wAp+wAb, ifr=s.

Proof. (a) and (c) are straightforward. To prove (b), we write

w:Za,dz,, I=(i,..., i), i< < i,

o= bidzy,  J=(r....J), 1 <...<js
Then

w/\<p=Za,dem,-, A...Ndzy Ndzj A...Adz;,
IJ
= ijal(—l)dill,'l Nosss /\d.Z'u,_l /\d.’L‘jl /\dillik Nis /\d.’l«'js
1J
= Zb;a;(—l)kdxj, /\(l;l),'l A § o /\dl'ik /\d:IIj2 A .../\d.’I:J_q.
1J

Since J has s elements, we obtain, by repeating the above argument for
each dzj,, je € J,

WA= bay(=1)*dz;, A... Adzj, Adzi, A Ada,
JI

=(-1D)*p Aw. a
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Remark 2. Although dz; Adz; = 0, it is not true that for any form wAw = 0.
For instance, if
w = T1dT1 A dTo + To2dx3 A dXy,
then
wAw = 2z122dT1 A dro AN das A dxy.

See however Exercise 4.

One of the most important features of differential forms is the way they
behave under differentiable maps. Let f: R™ — R™ be a differentiable map.
Then f induces a map f* that takes k-forms in R™ into k-forms in R™ and is
defined as follows. Let w be a k-form in R™. By definition, f*w is the k-form
in R™ given by

(frw)@)(v1,- .- k) = w(f (PN (dfp(1). - .., dfp(vi)).

Ilere p € R™, v1,..., v € Ry, and dfp: R — RY(,, is the differential of the
map f at p. We set the convention that if g is a 0-form,

fr(g)=gof.

We are going to show that the operation f* on forms is eaunivalent to
“substitution of variables”. Before that, we need some propertie

Proposition 3. Let f: R" — R be a differentiable map, w and © b.
on R™ and ¢:R™ — R be a 0-form on R™. Then:
a) f*lw+e)=fw+ o
b) fr(gw) = f*(9)f* (w),
c) If p1,...,0k are 1-forms in R™, f*(p1 A...A@k) = f*(¢1) At A
f*(n)-

Proof. The proofs are very simple. Let p € R™ and let v1,...,vx € R}.
Then

(@) fr(w+e)P)(v1,...,v) = (w+ @) (f(P)dfp(v1), . ... dfp(vi)) =
(fr@)@) (o1, ... o)+ (Fro) (D) (v, ve) = (Frw+ fro)(p)(vr, ... L)
(b) fr(gw)(@)(v1, ... vx) = (gw)(f())(dfp(v1), ... dfp(vr)) = (9o f)(p) -
frw@)(vr,...,v) = fr9(p) - frw(@)(vr,. . vk).
(c) By omitting the indication of the point p, we obtain
f 1 A Apr)(vr,. . vk) = (P1 A .. Agr)df (1), ..., df (vk))
= det(pi(df (v;)) = det(f*pi(v;))
=(fTer A A fRor) (v, k).

Remark 3. We will show below (See Proposition 4) that (¢) holds not only
for 1-forms but for k-forms as well.
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We can now present the promised interpretation of f*. Let (z1,...,zn) be
coordinates in R", (¥1,...,¥m) be coordinates in R™ and let f:R" — R™
be written as

y1 = fi(@1, ., Zn)ye o Ym = fml(@1, -0 T0). (*)

Let w = Y, ardys be a k-form in R™. By using the above properties of f*,
we obtain

fro=>fan(fdy,) A A dys).
I

Since
[ (dy:)(v) = dyi(df (v)) = d(y: o f)(v) = dfi(v),

we have

fro=>" ar(ful@1y.csZa)see o fonl@rse oy Ta))dfiy Ao Ay,
1

where f; and df; are functions of z;. Thus to apply f* to w is equivalent to

“substitute” in w the variables y; and their differentials by the functions of

z) and dzy obtained from (*).

” n various situations, it is convenient to use differential forms
wuty on some open set U C R™ and not on the entire R". It is clear

crything done so far extends trivially to this situation.

e (Polar coordinates). Let w be the 1-form in R* — {0,0} by

— Yy s o
w=-— +y2d£—+— > +y2dy.

Let U be the set in the plane (r,8) given by
U={r>0,0<86< 2w}
and let f:U — R? be the map

_Jxz=rcosb
f(r.0) = {y = rsenf

Let us compute f*w. Since
dx = cosfdr — rsen 6d6,
dy = sen fdr + r cos 0d6,

we obtain

~ 0 ~ O
ffrw=— Ts:: (cos @dr — rsenbdf) + Ao

r2

(senfdr + 7 cos 6d8)
=df.
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Notice that (a) of Proposition 3 states that the addition of differential
forms commutes with the “substitution of variables”. We will now show that
the same holds for the exterior product.

Proposition 4. Let f: R" — R™ be a differentiable map. Then
(a) f*(wA )= (f*w)A(f*p), where w and ¢ any two forms in R™.
(b) (fog)*w=g*(f*w), where g:RP? — R" is a differentiable map.

Proof. By setting (y1,...,Ym) = (f1(Z1,.- ., Zpn)y. ooy fm(T1,...,Tp)) € R™
(@1,...,2n) € R", w =3, ardyr, ¢ = 3_,; bsdy;, we obtain

Frlwne)=f(> arbsdyr Adyy)
IJ
= Zal(flv---»fm)bJ(fla---qu)de /\de
1J

= ar(fi,-es f)dfr A Y bs(freo s fm)dfs
I J
=ffwA fTe.

b) (feg)w=>3 rar((fog), ...(fog)m)d(feg)
= 2 r 0r(f1(91s05 5 5@n)s o+« 5. TmlG1s0 ¢+ s gn))df1(dg1s - ¢ - 5 dGn)
= g*(f*(w)). ]

We are now going to define an operation on differential form that gen-
eralizes the differentiation of functions. Let g: R™ — R be a 0-form (i.e., a
differentiable function). Then the differential

n ag
dg =Y 7705
=1

is a 1-form. We want to generalize this process by defining an operation that
takes k-forms into (k + 1)-forms.

Definition 5. Let w = Y aydz; be a k-form in R". The exterior differential
dw of w is defined by

dw = Zd(u ANdzy.
1

Ezample 4. Let w = zyzdx + yzdy + (z + 2)dz and let us compute dw:

dw = d(zyz) Adz + d(yz) ANdy + d(z + z) Ndz
= (yzdz + zzdy + zydz) A dz + (zdy + ydz) A dy + (dz + dz) A dz
—zzdx ANdy + (1 — zy)dz A dz — ydy A dz.
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We now present some properties of exterior differentiation. Item (c) is
probably the most important one and item (d) means that the operation d
commutes with substitution of variables.

Proposition 5.

a) d(w; + w2) = dw; + dwa, where wy and we are k-forms

b) dwAp) =dwAp+(—1)*wAdp, where w is a k-form and ¢ is an s-form

¢) d(dw) = d*w =0.

d) d(f*w) = f*(dw), where w is a k-form in R™ and f:R"™ — R™ is a
differentiable map.

Proof.
(a) is straightforward.
(b) Let w =", ardzy, ¢ = Y ; bydr;. Then

= Zd(aﬂu)/\dw; ANdxy
IJ

= ijd(l]/\d.’tI/\d;I:J-{-Z(I[de/\dTEI/\d:EJ
1J 1J

=dego+(—1)kZa1dm[Ade/\d$J
1J

=dw Ao+ (=1)*w A dp.

(c) Let us first assume that w is a 0-form, i.e., w is a function f:R" — R

that associates to each (z1,...,z,) € R" the value f(z1,...,2,) € R. Then
B n 0f B n 0f
d(df)— ( Edt1> _Zd(@xJ)/\de
Jj=1 g=i.
n n azf
= (Z BB dz; A dz;
Jj=1 =1

02 2
Since —1—6:_31, = M—a_é% and dz; A dz; = —dz; Adx;, @ # j, we obtain that
1 7 7 1

82f (j?f
d(df) = ; (axiaxj - ax,az,) dz; Adz; = 0.

Now let w = 3 asdz;. By (a), we can restrict ourselves to the case w =
ardzy with ay # 0. By (b), we have that
dw = day Ndxy + apd(dzy).

But d(dz;) = d(1) A dz; = 0. Therefore,
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d(dw) = d(das A dzy) = d(dar) A dzy + day A d(dzy) =0,

since d(dar) = 0 and d(dzs) = 0, which proves (c).

(d) We will first prove the result for a O-form. Let g:R™ — R be a dif-
ferentiable function that associates to each (y1,...,¥m) € R™ the value
g(y1,.-+,Ym). Then

) 99 0fi ,
fr(dg) = f* (Z E%d.%) Z 3g 33{]

—Za(g Dy zj=d(go f)=d(f"g).

Now, let ¢ = Z, ardr; be a k-form. By using the above, and the fact
that f* commutes with the exterior product, we obtain

) =d(d_ f*(ar)f*(dxr))
1
=D d(f*(an) A fr(dzr)) = D f*(das) A f*(der)
I I
= f*(Q_dar Ndzr) = [*(dy)

I

which proves (d). O

In the exercises that follow we will often use the canonical isomorphism be-
tween R} and its dual (Rj)* that is established by the natural inner product
(,)of R™. We recall that if {e;} is the canonical basis of R" and v; = Y, a;e;,
vy = Y bie; belong to (R™),, then (vi,v2) = 3 a;b;. The above canonical
isomorphism takes a vector v € R} to an element w € (R})* given by
w(u) = (v,u), for all u € Rj. If we let the point p vary, this establishes a
one-to-one correspondence between vector fields in R"™ and exterior 1-forms
in R™; it is easily seen that this correspondence takes differentiable vector
fields into differential 1-forms and conversely.

EXERCISES

1) Prove that a bilinear form ¢: R® x R® — R is alternate if and only if
@(v,v) =0, for all v € R,
2) Prove that if i, <ip < ... < i and j; < ja < ... < Ji, then

_ lﬂ if Il :j1#°"»ik :j}\"
(dziy Ao A day ) (e, ... ,e5,) = {0’ otherwise.



