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Chapter 1

Introduction

During the last two decades, major development in convex optimization were focus-
ing on conic optimization, primarily, on linear, conic quadratic and semidefinite
optimization. Conic programming allows to reveal rich structure which usuolly is
possessed by a convex programm and to exploit this structure in order to process

the programm efficiently.

Arkadi Nemirovski
Advance in Convex Optimization: Conic Programming,
Plenary talk in IMU 2009, Spain

After the path-breaking paper of Karmarkar [64], linear optimization (LO) became
an active area of research. The resulting interior-point methods (IPMs) are now
among the most effective methods for solving LO problems. For a survey we refer
to recent books on the subject [123, 165, 170]. In this book we focus on the
conic optimization problems which are extended from LO in a cone structure way
and solve them by primal-dual IPMs based on kernel functions. It is generally
agreed that these [PMs are most efficient from a computational point of view (see,
e.g. Andersen et al. [10]). Below we first recall both the developments of conic
optimization and IPMs.

1.1 Conic optimization problems

Conic optimization problems are a class of convex nonlinear optimization prob-
lems, lying between linear optimization problems and general convex nonlinear
optimization problems. Among others, convex quadratic programming (QP) and
quadratically constrained programming (QCP) problems, including most portfolio
construction and risk budgeting problems, can be formulated as conic optimization
problems.

Conic optimization addresses the problem of minimizing a linear objective func-
tion over the intersection of an affine set and a convex cone. The general form is
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as follows
(CO) m'gl {c"z : Az—beK}.
zcR™

The objective function is ¢Tz, with objective vector ¢ € R". Furthermore, Az — b
represents an affine function from R™ to R™ and K denotes a convex cone in R™.
Usually 4 is given as an m x n (constraint) matrix, and b € R™. The importance of
this class of problems is due to two facts: many nonlinear problems can be modeled
as a conic opt:imization problem, and, secondly, under some weak conditions on the
underlying cone X, conic optimization problems can be solved efficiently.

The most easy and most well known case occurs when the cone K is the nonneg-

ative orthant of R™, i.e. when K = RT":
(LO) min {cTz : Az -be RT}.
zER™

This is nothing else as one of the standard forms of LO problem. Thus it becomes
clear that LO is a special case of CO. It is well known that LO models cover numer-
ous applications. Whenever applicable, LO allows to obtain useful quantitative and
qualitative information on the problem at hand. The specific analytic structure of
an LO problem gives rise to a number of general results which provide in many
cases valuable insight and understanding. At the same time, this analytic structure
underlies some specific computational techniques for LO; these techniques, which
by now are perfectly well developed, allow to solve routinely quite large (with
tens/hundreds of thousands of variables and constraints) LO problems. Neverthe-
less, there are many situations in reality which cannot be covered by LO models.
To handle these “essentially nonlinear” cases, there is a strong need to extend the
basic theoretical results and computational techniques known for LO beyond the
bounds of LO.

When passing from a generic LO problem to its nonlinear extensions, we should
expect to encounter some nonlinear components in the problem. Historically, this
was done by putting the nonlinearity in the functions defining the problem, as done
above in problem (P). In conic optimization, however, we replace the cone R in
LO by a nonlinear convex cone K, and hence the nonlinearity is now captured in
the cone. In the next section we discuss some basic properties of relevant convex
cones and we introduce two special cones that play prominent role in the context
of conic optimization.

In the recent years, a lot of attention has been devoted to conic optimization.
The reason is that the interior-point methods that were developed in the last two
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decades for LO (see, e.g., [123, 143, 165, 170]), and which revolutionized the field of
LO, could be naturally extended to obtain polynomial-time methods for CO (see,
e.g. [100]). This opened the way to a wide spectrum of new applications which
cannot be captured by LO, e.g. in control theory, combinatorial optimization, etc.
For a complete survey both of the theory of CO and its applications, we refer to
the recent book [23].

The general form of a conic optimization problem is as given by (CO). In this
section we start with a discussion of the conditions on the cone K, and we review
the three most important cones. Then we deal with the main duality results for
CO. It will become clear that under some mild conditions the duality theory for
CO closely resembles the well known duality theory for LO.

Recall that a subset X of R™ is a cone if
ack, 220 = da€ek, (1)

and the cone K is a convex cone if moreover
a,d/ eK=a+d ek. (2)

We will impose three more conditions on K. Recall that CO is a generalization of
LO. To obtain duality results for CO similar to those for LO, the cone X should
inherit three more properties from the cone underlying LO, namely the nonnegative
orthant:

RY = {xz(ml,...,mm)T > 20,i:1,...,m}.

This cone is called the linear cone. The linear cone is not only a convex cone; it
is also pointed, it is closed and it has a nonempty interior. These are exactly the
three properties we need. We describe these properties now. A convex cone K is
called pointed if it does not contain a line. This property can be stated equivalently
as

a€K, —acK=a=0. (3)

A convex cone K is called closed if it is closed under taking limits:
aieIC(izl,Q,...),azllimai=>a€IC. (4)
Finally, denoting the interior of a cone K as int/XC, we will require that

intk # &. (5)
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This means that there exists a vector (in K) such that a ball of positive radius
centered at the vector is contained in K. In conic optimization we only deal with
cones K that enjoy all of the above properties. So we always assume that K is a
pointed and closed conver cone with a nonempty interior. Apart from the linear
cone, two other relevant examples of such cones are

(1) The Lorentz cone

Lm:{meRm : zm>1/mf+~-~+mfn_1}.

This cone is also called the second-order cone, or the ice-cream. cone.

(2) The positive semidefinite cone S7'. This cone “lives” in the space 8™ of mxm
symmetric matrices (equipped with the Frobenius inner product (4, B) =

Tr(AB) = ) Ay;Bi;) and consist of all m x m matrices A which are positive
1,3

semidefinite, i.e.,

St ={Ac8™ : 2"Az >0, VzeR™}.

We assume that the cone K in (CO) is a direct product of the form
K=K'x...xK™,

where each component K¢ is either a linear, a Lorentz or a semidefinite cone.

1.2 Conic duality

Before we derive the duality theory for conic optimization, we need to define the
dual cone of a convex cone K:

Ke={AeR™: ATa>0,VaecKk}. (6)
We recall the following result from [23].

Theorem 1.1 Let K C R™ is a nonempty cone. Then
(i) The set K, is a closed convez cone.
(ii) If K has a nonempty interior (i.e., intk # &), then K. is pointed.
(iii) If K is a closed convez pointed cone, then intK, # .
(iv) If K is a closed convez cone, then so is Ky, and the cone dual to K. is K
itself.

Corollary 1.2 IfK C R™ is a closed pointed convez cone with nonempty interior
then so is K., and vice versa.
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One may easily verify that the three cones introduced in Section 1.1 are self-dual.
The dual of a direct product of convex cones is the direct product of their duals,
ie.,

K=K'x - xK"=K,=K!x-- xK™.
As a consequence, any direct product of linear, Lorentz and semidefinite cones is
self-dual.

1.3 From the dual cone to the dual problem

Now we are ready to deal with the dual problem for a conic problem (CO). We start
with observing that whenever z is a feasible solution for (CO) then the definition
of K, implies AT (Az —b) > 0, for all A € K,, and hence z satisfies the scalar
inequality

ATAz > 2ATb, VA eK..

It follows that whenever A € K, satisfies the relation
AT) =, (7)

then one has
¢tz = (A"A)Tz = AT Az 2 ATb = b7,

for all z feasible for (CP). So, if A € K, satisfies (7), then the quantity bT\ is a
lower bound for the optimal value of (CP). The best lower bound obtainable in
this way is the optimal value of the problem

(CD) Jnax {8™A : ATx=c rek.}).

By definition, (CD) is the dual problem of (CO). Using Theorem 1.1 (iv), one easily
verifies that the duality is symmetric: the dual problem is conic and the problem
dual to the dual problem is the primal problem.

Indeed, from the construction of the dual problem it immediately follows that
we have the weak duality property: if z is feasible for (CP) and A is feasible for
(CD), then '

cTz —bTA > 0.

The crucial question is, of course, if we have equality of the optimal values whenever
(CO) and (CD) have optimal values. Different from the LO case, however, this is in
general not the case, unless some additional conditions are satisfied. The following
theorem clarifies the situation. For its proof we refer again to [23]. We call the
problem (CO) solvable if it has a (finite) optimal value, and this value is attained.
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Before stating the theorem it may be worth pointing out that a finite optimal value
is not necessarily attained. For example, the problem

1
min {:c : ( z ) tO}
z,yER 1 y

has optimal value 0, but one may easily verify that this value is not attained. We
need one more definition: if there exists an  such that Az — b € intK then we say
that (CO) is strictly feasible. We have similar, and obvious, definitions for (CD)
being solvable and strictly feasible, respectively.

Theorem 1.3  Let the primal problem (CO) and its dual problem (CD) be as
given above. The strictly feasibility and below bounded of one of the problems imply
solvability of both of them and characterization of optimality. It can be stated as
follows.

(1) (a) If(CO) is below bounded and strictly feasible, then (CD) is solvable and
the respective optimal values are equal.

(b) If (CD) is above bounded and strictly feasible, then (CP) is solvable, and
the respective optimal values are equal.

(ii) Suppose that at least one of the two problems (CO) and (CD) is bounded
and strictly feasible. Then a primal-dual feasible pair (z,)) is comprised of
optimal solutions to the respective problems

(a) if and only if ™A =Tz (zero duality gap).
(b) if and only if \T[Az —b] =0  (complementary slackness).

Note that this result is slightly weaker than the corresponding result for the LO
case. In the LO case the same theorem holds by putting everywhere “feasible”
instead of “strictly feasible”. The adjective “strictly” cannot be omitted here,
however. For a more extensive discussion and some appropriate counterexamples
we refer to [23)].

1.4 Development of the interior-point methods

The study of interior-point methods is currently one of the most active research
areas in optimization. The name interior-point methods originates from the fact
that the points generated by an interior-point methods lie in the interior of the
feasible region. This is in contrast with the famous and well-established simplex
method where the iterates move along the boundary of the feasible region from one
extreme point to another. Nowadays, interior-point methods for linear optimiza-~
tion have become quite mature in theory, and have been applied to practical linear
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optimization with extraordinary success. Linear optimization is one of the most
widely applied mathematical techniques. The last fifteen years gave rise to revo-
lutionary developments, both in computer technology and in algorithms for linear
optimization. As a consequence, linear optimization that fifteen years ago required
a computational time of one year, can now be solved within a couple of minutes.
The achieved acceleration is due partly to advances in computer technology but
significant part also to the new interior-point methods for Linear optimization.

During the 1940’s, it became clear that an effective computational method was
required to solve the many linear optimization problems that originated from lo-
gistical questions that had to be solved during World War II. The first practi-
cal method for solving Linear optimization was the simplex method, proposed by
Dantzig [36], in 1947. This algorithm explicitly explores the combinatorial struc-
ture of the feasible region to locate a solution by moving from a vertex of the
feasible set to an adjacent vertex while improving the value of the objective func-
tion. Since then, the method has been routinely used to solve problems in business,
logistics, economics, and engineering. In an effort to explain the remarkable effi-
ciency of the simplex method, using the theory of complexity, one has tried very
hard to prove that the computational effort to solve an linear optimization problem
via the simplex method is polynomially bounded in terms of the size of a problem
instance. Klee and Minty, have shown that the worst-case behavior of the simplex
method is exponential in [66].

The first polynomial method for solving linear optimization was proposed by
Khachiyan [65], in 1979. It is the so-called ellipsoid method. It is based on the
ellipsoid technique for nonlinear optimization developed by Shor [132]. With this
technique, Khachiyan proved that linear optimization belongs to the class of poly-
nomially solvable problems. Although this result had a great theoretical impact, it
failed to keep up its promises in actual computational efficiency. A second proposal
was made in 1984 by Karmarkar in [64]. Karmarkar’s algorithm is also polynomial,
with a better complexity bound than Khachiyan’s, but it has the further advan-
tage of being highly efficient in practice. After an initial controversy it has been
established that for very large, sparse problems, subsequent variants of Karmarkar's
method often outperform the simplex method. Though the field of linear optimiza-
tion was then considered more or less mature, after Karmarkar’s paper it suddenly
surfaced as one of the most active areas of research in optimization. In the period
1984—1989 more than 1300 papers were published on the subject. Originally, the
aim of the research was to get a better understanding of the so-called projective
method of Karmarkar. Soon it became apparent that this method was related to
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classical methods like the affine scaling method of Dikin [38], the logarithmic bar-
rier method of Frisch [41], and the center method of Huard, and that the last two
methods, when tuned properly, could also be proved to be polynomial.

The interior-point methods developed for linear optimization could be naturally
extended to obtain polynomial-time methods for conic optimization. In conic opti-
mization, a linear function is minimized over the intersection of an affine space and
a closed convex cone. The foundation for solving these problems by interior-point
methods was laid by Nesterov and Nemirovskii [100]. These authors considered
primal (and dual) interior point methods based on so-called self-concordant barrier
functions. Later, Nesterov and Todd [101, 102] introduced symmetric primal-dual
interior-point methods on a special class of cones called self-scaled cones, which
allowed a symmetric treatment of the primal and the dual problem. Conic opti-
mization includes solving problems such as linear optimization, semidefinite opti-
mization and second order cone optimization problems. During the last two decades
interior-point methods have proved to be a powerful tool to solve convex optimiza-
tion problems, provided that we have a self-concordant computationally tractable
barrier function for the underlying cone. Until recently all the barrier functions
considered were so-called logarithmic barrier functions. However, there is a gap
between the practical behavior of the algorithms and the theoretical performance
results, where the practical behavior is better than the worst-case complexity anal-
ysis. This is especially true for the so-called large- update methods. If n denotes
the number of variables in the problem, then the theoretical complexity analy-

sis of large-update methods yielded an O (n log (g)) iteration bound, where ¢

represents the desired accuracy of the solution. In practice, however, large-update
methods are much more efficient than the so-called small-update methods for which

the theoretical iteration bound is only O (\/E log ( g)) So the current theoretical

bounds differ by a factor v/n, in favor of the small-update methods. This gap is
significant.

As we mentioned before, several interior-point methods for linear optimization
were extended to semidefinite optimization and second-order cone optimization. In
fact, these optimization problems can be defined as minimizing a linear function
over the intersection of an affine space and a closed convex cone. If the cone is
the linear cone, the second order cone or the cone of real semidefinite positive
symmetric matrices, then we have respectively a linear optimization problem, a
second-order cone optimization problem or a semidefinite optimization problem.
These three cones are the most relevant for the optimization field, and they were
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classified as belonging to the set of self-dual and homogenous cones, also called
symmetric cones. Thus, many authors developed interior-point methods for conic
optimization by generalizing existing interior-point methods for linear optimization.

1.5 Scope of the book

In preparing this book, a special efforts has been made to explore the idea of
interior-point methods for conic optimization based on kernel functions.

In Chapter 2, the kernel functions are discussed and illustrated by eleven exam-
ples. Properties of kernel functions, including barrier properties, minima over its
domain as well as their differentiability, are discussed in the chapter. Furthermore,
the barrier functions based on kernel function are'presented. These barrier func-
tion will be used as the search direction for designing and analyzing the primal-dual
interior-point algorithms. '

Chapter 3 presents a primal-dual interior-point algorithms for solving linear op-
timization problem based on the kernel functions, in which the KKT conditions
of problem is perturbed and the barrier function determined by kernel function is
essentially solved by Newton method. The iteration bounds for large- and small-
update methods are discussed. Chapter 4 the algorithm is extended to solve P*(k)
linear complementarity problem.

The remaining chapters are Chapter 5 and 6 that present the extension of al-
gorithm based on kernel functions to semidefinite optimization and second-order
cone optimization, respectively. The complexity bound for large- and small-update
methods are obtained, respectively. The numerical examples are shown that the
algorithms are efficient.



Chapter 2

Kernel Functions

In the past two decades the barrier functions play an important rule in the devel-
opment of interior-point methods (IPMs). The selection of a suitable barrier may
help the construction of the scheme of efficient interior point algorithm. The key
ingredient in kernel function-based interior-point algorithm is the construction of
an univariate function for the central path of the optimization problem considered.
Then n-dimensional function determined by this univariate function and called
barrier function provides provably good proximation between the iterates and the
central path. The excellent properties of kernel function and the barrier are easy
to computing and derivative.

Kernel function is one of major theme of this book, and this chapter provides
an elementary introduction. We introduce the donation of kernel functions and
explore their properties which will be used for analysis of the interior-point algo-
rithms. We will move on the barrier function determined by kernel function. We
then demonstrate the properties of barrier functions which can be applied directly -
to compute the complexity bound of algorithms. In final section of this chapter
we generalize the kennel function to finite kernel function and parametric kernel
functions, respectively.

2.1 Definition of kernel functions and basic properties

Beginning with introduction of the notation of kernel functions in this section, we
present their further conditions and develop some of their basic properties both of
which will lead to the analysis for IPMs in the following sections.

Definition 2.1 Lety : Ry, — Ry be twice differentiable. A univariate function
Y is called a kernel function if it is satisfied with the following conditions:

¥ (1) = (1) = ; (8)

(1) > 0; ©)
lim (t) = lim (1) = oo, (10)
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Obviously, (8) and (9) say that (t) is a nonnegative strictly convex function and
attains its minimizer at ¢ = 1 with the optimal value that ¢(1) = 0. Furthermore,
(8) and (9) implies that 1(¢) is completely determined by its second derivative:

t pg
v = [ [ w0 (1)
1
Moreover, (10) expresses that v(t) is coercive and has the barrier property.

The prototype self-regular kernel function in [110] is given by

Pl 1 tl=e_1 p—gq
Y, () = + +
ral) plp+1)  qlg—1)  pg

where p > 1 and ¢ > 1. The parameter p is called the growth degree, and g the

(t - 1))

barrier degree of the kernel function.
The following are some examples of kernel functions:
2 — 1
1) ¥@) = — = logt, t>0.

t2—~-1 ¢#-1-1
(2) ¥(t) = + , t>0, ¢>1.
2 g—1

t
(3) ¥(t) = i;—l —/1 et Vdg, t>0, g>1.

1—¢q

@ @) =t—14—-=-1

=1 t>0, g>1.

2.2 The further conditions of kernel functions

In this section, we work with five more conditions on the kernel function, namely,

') +¢'(t) >0, t<l, (12)

W) -¢'(t) >0, t>1, (13)

¥7(t) <0, t>0, (14)

20" (2)? — ¢/ ()" (t) > 0, t<1, (15)

W (B (1) — BY (1) (Bt) > 0, t>1,8>1. (16)

Note that conditions (14) and (16) require that 1(t) is three times differentiable.
Furthermore, condition (12) is obviously satisfied if ¢ > 1, since then ¥/(t) > 0
and, similarly, condition (13) is satisfied if ¢ < 1, since then ¥/(t) < 0. Also (15) is
obviously satisfied if ¢ > 1 since then /() > 0, whereas " (t) < 0. We conclude



