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Chapter 1
Vector spaces

1.1 Fundamentals

Definition 1.1. A vector space & over a field % is a set & on which the operations
addition @ : & x & — & and scalar multiplication ® : ¢ x & — & satisfy, for
allu,v,we &, and a, 3,1 € %

(Al)  Addition is commutative upv=vdu

(A2) Addition is associative (upv)Bw=ud(vibw)
(A3)  Additive identity 0 exists vip0=v

(A4) Additive inverse —v exists v (—v)=0

(M1) Multiplication is assocative (ap)@v=oa(Bv)
(M2) Multiplicative identity exists l@v=yv

(D1) Distributive law for scalars (@ +B)®v = avd fv
(D2) Distributive law for vectors a(viow) = avd Pfw

Table 1.1 Properties of a vector space &.

Remark 1.1. By abuse of notation and when convenient, it is written + instead of ¢
and x instead of &.
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2 I Vector spaces

Definition 1.2. A nonempty subset .% C & is a subspace if .% is a vector space
using the operations of addition and multiplication defined on &.

Definition 1.3. A nonempty subset .# C & is a subspace of & if and only if:
1.7 #0.
2.Vu,ve F, Va,f € X au+fve F.

Definition 1.4. Let vy, v,...,v; be a set of vectors of a vector space &. A vector v
is a linear combination of vy, vo, ..., vy if

V=04V + 0V +...+ 0y VK

for some scalars «, ..., 0.

Definition 1.5. The set of all linear combinations of the vectors vy,..., vy ina vector
space & is the span of vy, ..., v, denoted by (vy,...,vg).

Definition 1.6. Let v, vy, ..., v be vectors in the vector space &. The set {vy,va,..., v}
is linearly dependent if one of the vectors v; can be written as a linear combination
of the remaining k — 1 vectors.

Lemma 1.1. The set of vectors Vi,vVa,...,V is linearly independent if and only if
whenever
avi+ovy+ ...+ ogvg =0

it follows that o) = 0 = ... = oy = 0.

Theorem 1.1. Let b = (vy,va,-- -, Vi) be a set of vectors in a vector space .#. The
subset b is a basis of F if and only if the set b is linearly independent and spans .7 .

Definition 1.7. The dimension of a vector space & is the cardinality of any basis of
& and is denoted by dim&'. & is finite-dimensional if it is the zero subspace {0} or
if it has a basis of finite cardinality. Otherwise it is called infinite-dimensional.

Theorem 1.2. Any two basis for a vector space & have the same cardinality.
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Theorem 1.3. Let & be a vector space. If € = {F;: i € J#'} is a collection of
subspaces of &, then

@ie.)f’ Fi; ﬂieﬁ.% F

are subspaces.

Theorem 1.4. If % and % are subspaces of a vector space &, then F U9 is a
subspace if and only if F C 9 or ¢ C F.

Theorem 1.5. If .Z is a subspace of a vector space &, then there exists a subspace
9 such that:
E=F0Y

Theorem 1.6. Let .# be a subspace of a finite-dimensional vector space &.

a) Suppose that F is a proper subspace (# C &), then dim.Z < dim&’.
b) Suppose that dim.# = dimé&, then F = &.

Theorem 1.7. If % and 4 are subspaces of a vector space &, then:
dim(Z ®¥) =dim.# +dim¥ —dim.% NY
Moreover, if N9 =0 then dim.% NY =0 and

dim.Z ¥ = dim.% +dim¥

1.2 Worked Examples

Problem 1.1 Let & = R? and .# = R. Addition @ is defined as:

D R2 x R? — R?
(x1,31) ® (x2,¥2) = (x1 4+ 3x2,1 —¥2)

Is & a vector space over the field %7

Resolution

For & to be a vector space over the field .# it must satisfy all properties in
Table 1.1.

Let’s start with property (Al). Let u = (x;,y;) and v = (x2,y2). Then:
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udv = (x;,y1)® (x2,y2) = (x1 +3x2,51 —2)

On the other hand, it is obtained:
vou = (x2,y2) ® (x1,y1) = (x2+3x1,y2 — 1)

Thus u@ v # vdu, and the property fails. One concludes that & is not a vector
space over the field % .

Problem 1.2 Let & = R? and ¥ = {(1,0,1),(0,1,1),(0,—1,-5+a)}.
a) Show that fora = 1, & is a subset of linearly independent vectors.

b) Write w = (x,y,z) as a linear combination of the three vectors of &7

Resolution

a) Fora=1, o/ ={(1,0,1),(0,1,1),(0,—1,—4)}. To prove that these three vec-
tors are linearly independent, one must show that whenever

a(1,0,1)+B(0,1,1)+7(0,—1,-4) = (0,0,0) (1.1)

it follows that a = B =y =0.
Expression (1.1) is equivalent to:

(a,p—7v,0+ B —4y) =(0,0,0)
a=0;B=vy7=0

Thus o = B = ¥ =0, so the vectors are linearly independent.
b) To write w as a linear combination of the three vectors of .47, one must solve:

a(1,0,1)+ B0, 1,1)+y(0,—1,—4) = (x,y,2) (1.2)
Expression (1.2) is equivalent to:
(a’B o 77a+ﬁ*47) — (x,y,Z)

—X—=y

a=x;B=y+y¥=—"3

Thus

—x—4y

(x.y,2) = x(1,0,1) — * : 2= X

(0,1,1)— (0,—1,—4)

Problem 1.3 Are the following sets basis of the corresponding vector spaces? If yes,
compute their dimension.

a) {(1,-1),(2,3)} of & = R2.

b) {(—1,-1,1),(2,1,0),(1,0,—1)} of & = R3.
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Resolution

a) To prove that {(1,—1),(2,3)} is a basis of & = R?, one must check if the
two vectors are linearly independent and if they span RZ. As it is known that
dimR? = 2, then it is sufficient to show that the two vectors are linearly inde-
pendent, since as they are two and two is the cardinality of a basis of R?, then
it is proved that they are elements of a basis of R2.

The two vectors are linearly independent if and only if

o(l,-1)+B(2,3)=(0,0) = a=p=0

Thus
(a’_a)+(2ﬁ,3ﬁ) = (070)
Soa+2B=0A—a+38=0
sa=-2BA=0c0=0,=0

One concludes that the two vectors form a basis of R?, since they are linearly

independent.
b) To prove that {(—1,—1,1),(2,1,0),(1,0,—1)} is a basis of & = R3, one must
check if the three vectors are linearly independent and if they span RR3. Thus:

a(—1,—1,1)+B(2,1,0)+¥(1,0,1) = (0,0,0)
= —a+2B+y=0A—-a+B=0Aa+y=0
0=0AB=aAy=—-a

As a € R, then the three vectors are linearly dependent. In fact, one can eas-
ily show that (1,0,1) = (—1,—1,1) 4+ (2,1,0), so the third vector is a linear
combination of the two first vectors.

Problem 1.4 Find the subspace of R; [x] spanned by the vectors {1,x,x*> +x}.

Resolution A general vector of Ry[x] is of the form a + bx + cx”. This vector is
spanned by {1,x,x2+x} if it is written as a linear combination of them. Thus:

o x 14 Bx+y(x2+x)=a+bx+cx®
sat+(B+y)x+pi=a+bxtcex®

Two polynomials are identical if the coefficients of the similar monomials are
equal. Then:

a=a;B+y=by=cooa=apf=b-cy=c
The subset spanned by {1,x,x> +x} isA = {a+ (b —c)x+cx*: a,b,c € R}.

Problem 1.5 Let .Z = {(x,y,2,t) € R*: y+z+1t=0}and & = {(x,y,z,1) € R*:
x+y=0Az="2t} be two subsets of the vector space R*. Compute a basis and the
dimension of . # N¥Y.
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Resolution Vectors in the subset .% N% must satisfy the conditions y+z+1 =0
and x+y=0Az=2t, thus

FNG ={(x,5,2,t) ER*: y+z+1=0Ax+y=0Az=21}

FNnG={(x,yzt) ER :y=—z—1=-2U—t=-3tAx=—y=3tAz="2}

FNYG ={(3t,-31,2t,1), t e R} ={((3,-3,2,1))

The dimension is dim.% NY = 1, since .# N is spanned by only one vector.

1.3 Proposed Exercises

Exercise 1.1
Let & be a non empty set and %" a field. In the itens below, justify if & is a vector
space over the field J¢".

a)

b)

c)

d)

& = Rlx], set of polynomials in the variable x and ¢ = R. Addition is defined
in the following way: leta =ap+ax+...+aux™ andb =bo+ b x+ ... +bx"
be two elements of R[x|. It is assumed, without loss of generality that m < n,
then:

a+b:((10+b0)-|—(a[ +bl)x+"'+(am+bm)v‘m+"'+(an+bn)xn

where a1 = =a, =0.
The scalar multiplication ¢ x & — & is given by:

oa = aap+ (aa))x+ -+ (oa,)x"

where @ € R and ag+ajx+ ...+ ax" € R[x].
& = Z and ¥ = R with the usual addition of integers and the multiplication of
a vector by a real number.
& =%la,b) = {f : [a,b] - R : f is a continuous function} and ¢ = R, with
the usual addition of functions and the usual multiplication of a scalar by a
function.
& =R" and ¥ = R, with addition of two vectors and multiplication by a scalar
defined by:

@®: RF xRt - R

(r,y) > x@y=73

®: RxRtM—R'
(o, x) > @®@x=x*
Let % be a field and & = %" the set of the n ordered -uples of elements of . %
given by: s
A ={a=(ay,ar,...,ap): a; € K}
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Addition is defined by:
at+b=((a;+b),(az+b2), - J(an+bn))

for all (ay,az,...,an), (bi,ba,...,by) € H".
Multiplication by a scalar a € . is defined by:

oa=(aay,0ay, -~ ,0ay)

where (ay,az,--- ,ap) € A"
f) & =R3 and .# = R, with the usual addition and the multiplication by a scalar
defined as follows:
c(x1,x2,x3) = (0,0,cx3)
g) & = R? and ¥ = R, with the usual multiplication by a scalar and addition
defined by:
(x1,%2) ® (v1,52) = (01 +2y1,%2 + y2)

h) &= R? and .# = R, with the usual addition and multiplication by a scalar.
i) & =R? and .# = R, with addition and multiplication by a scalar given by:

@: RY" xRY - R"

(x,y) > xby =%

®: RxRF—R"
(o, x) > o ®@x =x*

Exercise 1.2
Let & be a vector space, X = (x1,+++,X,) and y = (1, ,yn) be two vectors of &,
where x;,y; >0,i=1,--+,n,and A € R. Addition and multiplication by a scalar are
defined, respectively, as follows:

XDy = (X115 s Xn¥n)
Aox = (x},--,x})

a) Let 0 be the additive identity in &". Then:

A) 0=(1,1,---,1).
B) 0=(0,0,--- ,0).
©) 0= (xy Va5 Ve 251 )
D) Other.
b) Let 1 be the multiplicative identity in R. Then:
A) 1=1.
B) I =(1,1,...,1).
C) 1=0.
D) Other.

¢) Let —x be the additive inverse in & of x. Then:
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A) —x = (Inxy,Inxy, ... Inx,).
B) —x=(—x1,—X2,...,—Xn)-
C) —x:(x,",xz",...,x,;')‘
D) Other.

Exercise 1.3
Let & be a real vector space. Are the following vectors independent in the corre-
sponding vector space? Justify.

a) (3,1), (4,—2) and (7,2) in & = R?,

b) (0,-3,1),(2,4,1) and (—2,8,5) in & = R.

o (—1,2,0,2),(5,0,1,1,) and (8,-6,1,—5) in & = R*.

d) u=1,v=1-xand w= (1 —x)? in & = Ry[x] (set of polynomials of degree
less or equal to 2).

e) u(x) =e* and v(x) = ¢, for all x € R, in & = F(R), where F(R) is the set of
applications of R in R.

Exercise 1.4
Leta=(1,1,1,0), b= (0,1,1,1), ¢ = (1,1,0,0), d = (x,y,z,¢) be vectors in R*.
These vectors are linearly independent if and only if:

A) x—y+1#0.
B) x+y—z#0.
C) x+z—1t#0.

D) None of the above.

Exercise 1.5
Let (1,0,—1), (1,1,0), (k,1,—1) be three vectors of R, For what values of k € R
are these vectors linearly independent?

A) k+#—2.
B) k+#2.
C) k+#—1.
D) k# 1.

Exercise 1.6
Consider the following polynomials of the vector space Rs|x]:

u(x) =X 443> —2x+3, v(x) =x> +6x> —x+4, wx) =3 +8 —ax+b
where a, b € R. These polynomials are linearly dependent if:

A) a#8ANb#T.
B) a#A8AbeR.
C) acRAb#T.
D) None of the above.
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Exercise 1.7

Let & be the vector space of all real-valued functions of one real variable. Consider
the functions fi, f2, f3, &1, &2, 83 € &, such that fi(1) = €*, fo(t) = 1%, f3(1) =1,
g1(t) = sint, ga(1) = cost, g3(t) = t. Then:

A) f1, f», f; are linearly dependent.
B) g1, g», g are linearly independent.
C) g1, g2, g3 are linearly dependent.
D) f», f3 are linearly dependent.

Exercise 1.8

Let & be the vector space of all real-valued functions of one real variable. Consider
the functions fi, f», f3 € &, such that f) (x) = sinx+3sin2x, f2(x) =2sinx+sin3x,
f3(x) = 2sin2x. Then:

A) f1, f, f3 are linearly dependent.
B) f1, f2, /3 are linearly independent.

Exercise 1.9

Letx = (1,0,0),y = (0,1,0) and z= (0,0, 1) be vectors of the real vector space R3.
Let w = (a,b,c) € R? be an arbitrary vector. Write w as a linear combination of the
vectors x, y and z.

Exercise 1.10
Letx = (1,a,2),y = (b,b*,6) and z = (1,—a,2) be vectors of the real vector space
R3.

a) Find the values of a, b € R such that x, y and z are linearly independent.
b) Let b =3 and compute the values of a € R such that y € (x,z).

Exercise 1.11
Let u, v and w be linearly independent vectors of a real vector space &. Show that
the vectors cu+v, u —v and u—2v-+w are also linearly independent vectors.

Exercise 1.12
Let u and v be two vectors linearly independent vectors of a real vector space &.
Determine & € R such that the vectors a@u+2v and u — v are linearly dependent.

Exercise 1.13
Let u, v and w be linearly independent vectors of a real vector space &'. Compute
o, B € R such that the vectors cu+2v+2w and u+fv—w are lincarly dependent.

Exercise 1.14
Consider the following real vector spaces and corresponding vectors. Show, for each
case, if these vectors span the given vector spaces.

a) A=1{(1,2), (0,—1), (1,-2)}, & =R%.
b) B={(1,0),(3,0)}, & =R2.

¢) C={1, 2x, ¥ +1, x* —x}, & = Rsx].
d) D=1{(1,3,0), (0,1,1), (1,1,1)}, & =R
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Exercise 1.15
Consider the vector (a,f,1), where o, 8 € R. This vector belongs to the space
spanned by the vectors (1,2,—1) and (2, —1,2) for:

A) a=1AB=1.
B) a =2AB=1.
C) a=3AB=1.
D) None of the above.

Exercise 1.16
Are the following sentences true or false? Justify.

a) Let & be a vector space of finite dimension n. Then any set of n 4 1 vectors is
linearly dependent.

b) Let & be a vector space of finite dimension n. Then any set of vectors linearly
independent is part of a basis.

¢) A necessary condition for a family of vectors (uy,uy,...,u,) of a vector space
& to be independent is that none of the vectors is a multiple of any other.

d) The previous condition is sufficient.

€) A necessary condition for a family of vectors (uj,us,...,u,) of a vector space
& to generate that space is that any family (uj,up, ..., u,,v) is dependent.

f) The previous condition is sufficient.

g) A necessary condition for a family of generators (uj,up,...,u,) of a vector

space & to be dependent is that any smaller family of n— 1 vectors generates &'.
h) The previous condition is sufficient.

Exercise 1.17
Consider the vectors uy, up, uz € R* such that u; = (1,0, —1,2), uy = (1,2,-5,0),
u3z = (1,1,-3,1). Choose the correct option.

a) The vectors u;, up, uj are:

A) linearly dependent.
B) linearly independent.

b) The dimension of the vector subspace generated by the vectors uy, uy, u3 € R*
is:

A) 1.
B) 2.
C) 3.
D) None of the above.

Exercise 1.18
Consider the vectors u, v, w € R? such that u = (1,3,-1), v=(2,1,3), w =
(3,4,2). The vectors u, v, w are:

A) linearly dependent.
B) linearly independent.
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Exercise 1.19
Consider the vector space & spanned by the vectors

W ==

1 1

1 4
2 |7] 6
-3 —2

Y BV B

-2

The dimension of &, dim &, is:

A) dimé& = 1.
B) dimé& =2.
C) dim& =3.

D) None of the above.

Exercise 1.20
Do the following vectors form a basis of the corresponding vector spaces? Justify.

a) {(1,2), (2,4)} of & =R,

by {(1,1,1), (1,0,3), (0,0,1)} of & =R>.

) {(0,1,1,0), (1,—1,1,—1), (1,0,2,~1), (0,0,0,1)} of & = R*.
d) {1, l+x x2 423} of & = Rsx].

e) {1, x, x> +x} of & =Ra[x].

Exercise 1.21
Let R [x] be the vector space of the real polynomials in x € R with degree less or
equal than one.

a) Prove that b = (1,x) and b’ = (5x,3 +4x) are both basis of R, [x].
b) The coordinates of the vectors u = (2,3) and v = (4,1) in b’ are given by,
respectively:

A) (4/15,8/3), (—4/15,8/3).
B) (1/15,2/3), (—13/15,4/3).
C) (-4/3,13/15), (8/3,—1/15).
D) None of the above.

Exercise 1.22
The coordinates in the canonical basis of R? of the vector v are (4,—3,2). In the
basis b = ((l 0,0),(1,1,0),(1,1,1)) the same vector is written as:

A) (5,-5,2).

) (=7, 53)
C) (4,-3,7).
D) (7,-5,2).

Exercise 1.23
For what values of k does the set of vectors {(1,k), (k,4)} form a basis of R??

A) k=2
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B) k # +2.
C) keR.
D) k= -2.

Exercise 1.24
Consider the vectors (1,1,—1), (2,1,0), (2,3,—1) of R3.

a) Are these vectors a set of generators of R*? If yes, write (x,y,z) € R? as a linear
combination of these vectors.
b) Do the three vectors form a basis of R?? Why?

Exercise 1.25
Let .7 = ((2,1,1),(1,2,5),(1,—1,4)). Find the dimension of . and find a basis
for .77.

Exercise 1.26
Show that % = {u;,uy,u3} where

u = (1,0,1), = (1,-1,2), u3 =(1,1,3))
is a basis of R,

Exercise 1.27
Consider the vectores u; = (1,1,a), up = (0,1,1), u3 = (1,0,b) of R>.

a) Determine a and b such that (u;,u2,u3) forms a basis of R3.
b) Consider a = 0 and b = 1. Express the vector (1,2,0) in the basis (u;,us,u3).

Exercise 1.28
Let (1, 1+x2, b(x)) be a basis of Ry|[x].

a) Compute b(x).
b) Write the coordinates of 2x> — 7x in the basis (1, 1+ x, b(x)).

Exercise 1.29
Let (e;,ez,e3) be a basis of the vector space &. Letf; =e; +e3,f, = —e; +e3 and
f; = e, be vectors of &.

a) Show that (fi,f>,f3) is a basis of &
b) Express vector 2e; — 2e; +e3 in the basis (fi,f,f3).
¢) Determine a basis of & that includes the vectors e; and f;.

Exercise 1.30
Verify which of these subsets are subspaces of the corresponding vector spaces.

a) {(x,y) €R?: x=2y} of & =RZ.

b) {(x,y) €R?: x=2y+1}of & = R2.

¢) {f real function of a real variable : f(x).f (x) =1, Vx € R} of
& ={f: fisareal function of a real variable}.

d) {f real function of a real variable : f(x) = xf (x), Vx € R} of
& ={f: fisareal function of a real variable}.



