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PREFACE

The mathematical techniques known as “transform methods”™ have long been a basic
tool in several branches of engineering and science, and no wonder. Fourier’s simple
idea, radical in its time, that a function can be expressed as a sum of sine waves,
is ubiquitous. It underlies fields as diverse as communications, signal and image
processing, control theory, electromagnetics, and acoustics. Electrical engineers typ-
ically encounter the rudiments of Fourier transforms in undergraduate systems and
circuits courses, for modeling the spectral content of signals and designing frequency
selective circuits (filters). The Laplace transform, a close cousin of the Fourier trans-
form, enables the efficient analytical solution of ordinary differential equations and
leads to the popular “S plane™ and “root locus™ methods for analyzing linear systems
and designing feedback controllers. Discrete-time versions of the Fourier and Laplace
transforms model spectra and frequency responses for digital signal processing and
communications. Physics and engineering students meet the Fourier series when
learning about harmonic motion or solving partial differential equations, for exam-
ple, for waves and diffusion. The Fourier transform also models wave propagation
from acoustics to radio frequencies to optics to X-ray diffraction. The widespread
dissemination of the fast Fourier transform algorithm following its publication in
1965 added a computational dimension to all of these applications, from everyday
consumer electronics to sophisticated medical imaging devices.

My purpose in writing this textbook is to pull these threads together and present
a unified development of Fourier and related transforms for seniors and graduate
students in engineering and physics—one that will deepen their grasp of how and
why the methods work, enable greater understanding of the application areas, and
perhaps motivate further pursuit of the mathematics in its own right. Drafts of the book
have been used by myself and others for a 10-week course in Fourier transforms and
complex variable theory at the Thayer School of Engineering, Dartmouth College.
The prerequisites are an introductory course in lumped parameter systems (including
the Laplace transform) or differential equations. Qur course is itself prerequisite
to courses in signal and image processing and a more advanced course in applied
analysis taken by engineering and physics graduate students.

Philosophy and Distinctives

The book is more mathematically detailed and general in scope than a sophomore
or junior level signals and systems text, more focused than a survey of mathematical
methods, and less rigorous than would be appropriate for students of advanced
mathematics. In brief, here is the approach I have taken.
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1. The four types of Fourier transform on discrete and continuous domains—
discrete Fourier transform (DFT), Fourier series, discrete-time Fourier trans-
form (DTFT), and Fourier transform—are developed as orthogonal expansions
within a vector space framework. They are introduced sequentially, starting
with the DFT and working up to the continuous-time Fourier transform. The
same important properties and theorems are revisited for each transform in
turn, reinforcing the basic ideas as each new transform is introduced. This is in
contrast with an approach that either begins with the continuous-time transform
and works down to the others as special cases, or develops all four in parallel.

The early presentation of the DFT makes it immediately available as a tool for
computing numerical approximations to the Fourier series and Fourier trans-
form. Several homework problems give the student practice using numerical
tools. MATLAB® is used throughout the book to demonstrate numerical meth-
ods and to visualize important ideas, but whether to use MATLAB or some other
computational tool in the course is up to the instructor.

3. The fundamentals of complex analysis and integration are included as a bridge
to a more thorough understanding of the Laplace and Z transforms, and as an
additional way to calculate Fourier transforms.

e

Physical interpretations and applications are emphasized in the examples and
homework problems. My hope is that the student will cultivate intuition for
how the mathematics work as well as gain proficiency with calculation and
application.

5. Starred sections, which may be skipped on a first reading, give brief introduc-
tions to more advanced topics and references for further reading.

Each chapter has a table of key results, which should be particularly helpful for
reference after the course is completed.

2

Any author of an applied mathematics book must decide the extent to which the
development of the material will be supported by proofs. The level of rigor required
by a mathematician generally exceeds what is needed to justify the trustworthiness
of a result to an engineer. Moreover, to prove all the key theorems of Fourier analysis
requires a facility with real analysis and even functional analysis that exceeds the
usual mathematical background of an undergraduate engineer. The approach taken
here, for the most part, is to include proofs when they build intuition about how the
mathematics work or contribute to the student’s ability to make calculations and apply
the transforms. Otherwise, I will usually substitute informal plausibility arguments,
derivations of weaker results either in the text or in the end-of-chapter problems, or
computational illustrations of the principles involved. Footnotes refer the interested
reader to detailed treatments in more advanced texts.

Flow of the Book

The book has 10 chapters, which are described briefly here to show how the book’s
main ideas are developed. Chapter | is a review of the topics from geometry,
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trigonometry, matrix algebra, and calculus that are needed for this course. Chapter 2
then develops some fundamentals of vector spaces, particularly the generalizations
of the geometric ideas of norm, inner product, orthogonality and orthogonal expan-
sion from vectors to functions. This provides the unifying framework for the Fourier
family and acquaints the student with concepts of broad importance in engineering
mathematics.

Chapters 3-5 introduce, in sequence, the DFT, the Fourier series, the DTFT,
and the (continuous-time) Fourier transform. The DFT has the easiest vector space
interpretation of the four transforms, since it expands finite-dimensional vectors in
terms of orthogonal finite-dimensional vectors. Some basic Fourier theorems (lin-
earity, shift, energy conservation, convolution) are first presented here, then reappear
later for the other transforms. Chapter 3 includes a derivation of the fast Fourier
transform (FFT) algorithm and the discrete cosine transform (DCT), a close relative
of the DFT that is the mathematical foundation of JPEG image compression.

The Fourier series, Chapter 4, is a representation of a periodic function as an
infinite series of orthogonal sines and cosines. The appearance of the infinite series
raises the question of convergence and leads to the important connections among
convergence of the series, asymptotic behavior of the spectrum, and smoothness of
the original function. The chapter includes applications to the diffusion and wave
equations and to antenna arrays, and shows how to use the DFT to compute Fourier
coefficients and partial sums of Fourier series. Swapping the time and frequency
domains, the Fourier series becomes the DTFT, the basic tool for discrete-time
system analysis and signal processing.

The Fourier transform, Chapter 5, expands an aperiodic function as a contin-
uum of orthogonal sines and cosines rather than a set of discrete oscillatory modes.
Despite the additional mathematical complication, it has many of the same properties
as the DFT and the Fourier series and intuition developed earlier for these transforms
will carry over to the Fourier transform. The chapter emphasizes using Fourier theo-
rems for modeling systems (impulse response and transfer function) and performing
calculations. It also shows how to use the DFT to compute transforms and convo-
lutions. A brief introduction to time-frequency transforms and wavelet transforms
concludes the chapter.

Chapter 6 begins by placing the impulse (delta) function on a more secure
footing than the informal notion of “infinite height, zero width, unit area” that students
sometimes bring with them from earlier classes. This is followed by development of a
common, generalized framework for understanding ordinary functions together with
impulses and other singular functions. Sampling theory, introduced informally in
Chapter 3, is studied here in depth. It is also used to unify the four Fourier transforms,
via the observation that sampling in the time domain produces periodicity in the
frequency domain, and vice versa.

Chapters 7 and 8 are devoted to the theory of complex functions and methods of
complex integration, with a focus on ultimately applying the theory to understanding
and calculating transforms. Numerical calculations of the basic complex integral

}5 Z"dz on different closed contours are used to help students visualize why the
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integral evaluates either to 2xi or to zero, before formally introducing the fundamental
results, the Cauchy integral theorem and integral formula. The traditional subjects
of conformal mapping and potential theory are omitted, but the complex variable
introduction here is, I believe, sufficient preparation for subsequent courses, for
example, in electromagnetism or fluid mechanics, where complex potentials may be
useful.

Chapter 9 moves beyond the Fourier transform to the Laplace, Z, and Hilbert
transforms. The Laplace transform is motivated by the need to handle functions,
in particular ones that grow exponentially, that are beyond the reach of the Fourier
transform. The familiar Laplace theorems, used to solve initial value problems, are
derived and compared with their Fourier counterparts. The well-known partial fraction
expansion method for Laplace inversion is connected with complex integration and
extended beyond the rational functions encountered in linear system theory. The Z
transform appears via the Laplace transform of a sampled function, and analogies
between the transforms are emphasized. The Hilbert transform, which describes a
special property of the Fourier transform of a one-sided function, is developed and
applied to various problems in signal theory.

Chapter 10 concludes the book by revisiting the Fourier transform in two and
three dimensions, with applications to wave propagation and imaging. The closely
related Hankel and Radon transforms are introduced. Multidimensional transforms
of arrays of impulses are developed and applied to sampling theory and X-ray crys-
tallography.

Suggested Use

Most of Chapters 2-5, 7 and 8, and selected parts of Chapters 6 and 9, are covered
in my 10-week (30-hour) course. In a full semester course, additional material from
Chapters 6, 9, and 10 could be added. If students have already had a course in complex
analysis, or if time does not permit, Chapters 7 and 8 may be skipped, with the caveat
that portions of Chapter 9 are inaccessible without complex integration. However,
this would permit a thorough coverage of Chapters 2—6 and 10 with selected topics
from Chapter 9. While I naturally prefer the sequence of Chapters 2—4, they may be
approached in a different order, with the Fourier series before the DFT, and with the
vector space material presented “just in time” as the Fourier methods are introduced.
End-of-chapter problems cover basic and more complex calculations, drawn from the
theory itself and from many physical applications. I hope that instructors will find
sufficient variety to suit their particular approaches to the material.
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