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PREFACE

@ nabetv polbeiy

This book is in two parts. The first is intended to serve as a basis for a first
course on complex function theory for both undergraduate and graduate
students. It is not expected that the whole of Part One will be *““covered ”’ in a
semester. Experience and realism would say that the larger part of the first
seven chapters is manageable.Part One can constitute a semester course when
an adequate level of maturity is available. Chapter IX, the final chapter of
Part One, culminates in the proof of the prime number theorem of Hadamard
and de la Vallée Poussin—a particularly handsome application of topics
treated in earlier chapters. I dare say that a syllabus consisting of the
material presented in Part One forms a reasonable and, in fact, mathematically
appealing program that can serve as a basis for the requirements in complex
function theory for all doctoral candidates in mathematics at present.

Part Two seeks to supplement and round out the exposition for students
who are to use complex function theory seriously in their professional work. It
should serve as a foundation for subsequent courses in the area of complex
analysis on such topics as the Nevanlinna theory, Riemann surfaces, several
variable theory, and differential equations. It may be used for a proseminar
in analysis for first- or second-semester graduate students; or taken in con-
junction with Chs. VIII and IX it could serve as the basis of a second-semester
course on complex function theory in which active student participation is a
predominant note. I have envisaged the role of Part Two as twofold: to
increase the student’s experience with the ideas and methods of Part One and
to exploit the applicability of these methods.
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viii Preface

It is my intention to be specific about material from other disciplines which
will be used in this book. In particular, this will be the case for the theorems of
elementary real analysis, including the differential calculus. Precisely here
more than anywhere else the instructor of a first-semester course on complex
function theory encounters his greatest tribulations. The scope of elementary
courses on real analysis is so varied that frequently students of excellent
ability come to their first course on complex function theory with a less than
rudimentary grasp of the basic and most elementary theorems of the one and
several variable real differential calculus.

I have tried not to presume on the reader’s background for material from
other fields. Exceptions are: the representation of a positive integer as a
product of primes in Ch. VIII for which see [14]; improper integrals in
Chapters V, VII, IX, XIV for which see [32a]; and standard information from
the elements of linear algebra in Chs. XII, XVIII for which see [58]. It is
reasonable to suppose that the reader will be familiar with these questions.

The student should ultimately recognize that four principal methods domi-
nate complex function theory, methods closely associated with the founders of
the subject: the power series approach, the complex integral approach
embracing the Cauchy theory in its full range, the approach based on the con-
nection with the theory of harmonic functions, and the mapping approach.
The first method has its roots in the work of the eighteenth century and was
developed with grandeur by Weierstrass. The last two methods find their
sources in the work of Gauss and Riemann. At the beginning of the study of
complex function theory the Cauchy theory stands out because of its dazzling
virtuosity.

The status of complex function theory has changed greatly during this
century. At the beginning it had many triumphs. Today they are fewer. It is
also characteristic that complex function theory does not appear in splendid
isolation but rather along with other branches of mathematics as a component
interrelating with other components of an organic whole. The proud vaunt of
“rein funktionentheoretisch > belongs to an era that is past.

At the stage of the student’s development when he encounters complex
function theory, he will almost inevitably be subjected to bouts of rigor, to
“rectitude with exactitude.” It is in the nature of things and doubtless it
would be a mistake to put aside such aspects of mathematical training. How-
ever, I hope the student will seek a light touch.

I wish to acknowledge the influence of the books of Carathéodory [21] and-
of Saks and Zygmund [108]. The book of Saks and Zygmund is a model for
exposition of the highest standard which is free of refinement profitless at this
level. Special thanks are due to Professor F. M. Stewart for having communi-
cated to me earlier his treatment of the Cauchy theorem.
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There remains for me to express my thanks to Professors Eilenberg and
Smith for their long-standing invitation to write a volume on complex
function theory for their series, to the University of Illinois for affording me
the opportunity to write this book, and to Academic Press for its helpful
cooperation.

January 1968 MAURICE HEINS
Urbana, Illinois
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>> Chapter I <<

THE REAL FIELD

PREFATORY REMARKS

It is taken for granted that the user of this book has already studied
elementary real analysis. Desiderata for the purposes of complex function
theory are: the properties of the real number system, limit processes,
sequences, continuity, the Riemann-Stieltjes integral, and the basic theorems
of the differential calculus in one and several variables. However, there is
considerable variation of opinion concerning what elementary real analysis
consists of. Also, the actual amount of material treated in any given class is
apt to be very variable even in the presence of a fairly standard syllabus. A
period of adjustment between the reader and the book is probably inevitable.
In this chapter we give a succinct summary of material that should by and
large be well known to the student. The familiar parts should be read for
review, attention being given to the exercises. It is my experience that the
notions of limit superior and limit inferior are much less commonly known by
students than instructors might think. Since these notions are of considerable
use in complex function theory, they merit prompt attention.

For readers wishing supplementary material we suggest Ch. 1 of [133],
Chs. 1 and 2 of [36], and Chs. 1, 2, and 3 of [107].

1. SETS

The usual material of elementary set theory is so current that we may
certainly take it for granted. Thus, without explanation we use as known the
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