UML 2.0 BARFM (Zaom)

IN A NUTSHELL

A Desktop Quick Reference

UML 2.0 B2 RF (g ensq)
UML 2.0 in a Nutshell

Damn Pilone

with Neil Pitman

O'REILLY"

Beijing « Cambridge » Farnham « Kéln « Paris « Sebastopol « Taipei « Tokyo
8

O'Reilly Media, Inc.# 4 % i & & b 34L&

R K H A

BHEMm%mE (CIP) #iE

UML2OEARFM/ (3£) Apg (Pione,D.), (35) Kk
% (Pitman, N.) 2. — A -l REKFEDRE,
2006.4

4L : UML 2.0 in a Nutshell

ISBN 7-5641-0273-X

I.U.. 0.Of .. @f... ML ERMNEIES, UML —
B — HAFM - 3 V. TP312-62

I RRA B 4555 CIP Sy (2006) %5 010622 5

L BB A TERL & BRI
El=%. 10-2006-43 &

©2005 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast
University Press, 2006. Authorized reprint of the original English edition, 2005 O'Reilly
Media, Inc., the owner of all rights to publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
£ LR MW O'Reilly Media, Inc. % 5% 2005,

KL PR A K F kA R 2006, 3L ES P A A5k B Ae K B AT B PRAUAR 4K B AL
#h ¥ & # —— O'Reilly Media, Inc.#93% 7T,

BAFH, AFBRHFET, AHNETHR S F 2R TFEUETH X EF 4,

$ &/ UML2.0HiRFM (FER)

$ B/ ISBN 7-5641-0273-X

TiEamE ki

#E 1Rt/ Ellie Volckhausen, D4

HARRAT/ TRESRZE MM (press.seu.edu.cn)

I PRV 25 (RREL4HED 210096)

Rl i ERRIA BRAF)

A 787 ZEK x980 XK 16 A 14.75 K
W/ 20064 4 A5 1RR 2006 45 4 A4S 1 YKERRI
/0001 - 2000 #}

#r7 38.005C ()

8T HEE

Preface

About This Book

Welcome to UML 2.0 in a Nutshell. The Unified Modeling Language (UML) has
expanded quite a bit since its inception and can be applied to many different
domains, however it still has its roots in software development. We have tried to
make this book applicable to as broad an audience as possible, but it’s helpful to
have at least a cursory knowledge of Object Oriented Programming (OOP)
because UML draws much of its terminology from that domain.

Before going any further we'd like to clarify how this book refers to the Unified
Modeling Language. Grammatically speaking, “the UML” is correct. However, it
sounds weird. This book uses the more colloquial “UML”.

UML 2.0 in a Nutshell is a detailed reference for the UML 2.0 Superstructure,
from a user’s perspective. Whenever it would be helpful to clarify a UML concept
with a concrete example, we will present Java code.

In general we assume that you are familiar with OOP and the type of constructs
that go with it (classes, methods, inheritance, etc.). However, we make no
assumptions about what you know about UML. Each chapter starts with a top-to-
bottom discussion of the chapter’s topic. This will be fast paced and thorough,
meant for those who understand the basics and want te know the “nitty-gritty” of
a piece of UML. Subsequent sections are kinder, gentler discussions of the topic.
This includes examples that show how the topic may be applied to typical prob-
lems, help you further refine your models to eliminate ambiguity, capture details
that might otherwise be lost, or add information to your model that aids in tool-
based development.

A brief word of warning: UML has a strict terminology for just about every aspect
of modeling. This is necessary to reduce ambiguity and confusion as much as
possible. However, in everyday use some terms are used interchangeably with
others that have completely different meanings in UML. A classic example of this
is operation and method. These are frequently treated as being synonymous in a

xiii

software development environment but have different meanings when used in the
context of UML. We will make a point to use the correct UML term even if it may
not be the most colloquial name.

How to Use This Book

This book is divided based on UML diagram type. Obviously there is some cross-
over, as some diagrams build on concepts from others. Chapter 1, Fundamentals
of UML, covers the basics of UML and presents some background information
that will help you understand the context for the rest of the book. If you are
familiar with previous versions of UML, you can probably skim this chapter. If
you don’t have a strong background in UML, you should definitely start here.

The next set of chapters cover what is called static modeling in UML. Static
modeling captures the physical structure of a piece of software (as much as soft-
ware has a “physical” structure). For example: what operations and attributes a
class contains, what interfaces a class realizes, or what packages contain all this
mess. The static modeling chapters include:

Chapter 2, Class Diagrams
This chapter introduces the class diagram. It discusses the various elements
that can be used on a class diagram, what they represent, and how to extend
them. Because class diagrams are often a centerpiece of a UML model, you
should know this chapter inside and out. The last part of the chapter
discusses how class diagrams fit into the overall UML model and how the
diagrams are typically mapped to code.

Chapter 3, Package Diagrams
This chapter introduces packages and grouping within a UML model.

Chapter 4, Composite Structures
This chapter introduces the new UML 2.0 concept of composite structures.
Composite structures are specifically designed to represent patterns and are a
major new component to the modeling language.

Chapter 5, Component Diagrams
This chapter introduces components and the component diagram. Topics
such as the stereotypes used in component diagrams, relationships between
components, and component metainformation are discussed. The latter part
of this chapter discusses how components are typically realized in a program-
ming language.

Chapter 6, Deployment Diagrams
This chapter introduces the concept of capturing system deployment using
deployment diagrams. Deployment fundamentals such as nodes, node stereo-
types, and relationships to components are explained. This chapter also
includes a discussion on modeling a distributed system using deployment
diagrams.

The next set of chapters cover the second half of UML—behavioral modeling.
Behavioral modeling captures how the various elements of a system interact
during execution. Diagrams such as the use case diagram can capture require-
ments from an external actor’s perspective, and sequence diagrams can show how

xiv | Preface

objects interact to implement a particular use case. The behavioral modeling
chapters include:

Chapter 7, Use Case Diagrams
This chapter introduces use cases, actors, and system boundaries. It goes
slightly beyond pure UML in that the chapter touches on common practices
regarding use cases, such as use case scoping, use case documents, and use
case realizations.

Chapter 8, Statechart Diagrams
This chapter introduces state machine modeling using states, actions, and
transitions. Statecharts can be used to model a simple algorithm all the way
up to a complex system,.

Chapter 9, Activity Diagrams
This chapter introduces a close relative to the statechart diagram, the activity
diagram. Activity diagrams resemble old-school flowcharts and are typically
used to model an algorithm or use case realization.

Chapter 10, Interaction Diagrams
This chapter introduces the large set of interaction diagrams supported by
UML 2.0. The two best-known diagrams are sequence and collaboration
diagrams. This chapter also discusses the new timing-centric interaction
diagram.

The final part of the book covers extension and applications of UML 2.0:

Chapter 11, Tagged Values, Stereotypes, and UML Profiles
This chapter discusses how UML 2.0 may be extended and refined.

Chapter 12, Effective Diagramming
This chapter departs from the specification side of UML 2.0 and offers real-
world advice on modeling, what parts of UML 2.0 to use when, and how to
effectively convey the right information.

Appendix A, MDA: Model-Driven Architecture
This appendix introduces the Model-Driven Architecture (MDA). While
MDA isn’t a new idea, UML 2.0 has MDA in mind in several places, and
next-generation tools may be able to make MDA a reality.

Appendix B, The Object Constraint Language
This appendix describes the Object Constraint Language (OCL), a simple
language defined to express constraints on UML diagrams. It can be applied
in countless ways and is introduced here in its basic form.

If you’re familiar with the fundamental UML concepts, you can read this book’s
chapters in nearly any order. However, there is always a certain amount of overlap
between chapters because some elements can appear on many diagrams. Instead
of repeating the information in each chapter, we fully define elements (and their
associated stereotypes, attributes, etc.) the first time they are encountered, and in
subsequent chapters, we provide detailed cross references back to the original
definition, when needed.

Preface | xv

Typographic Conventions

The following typographic conventions are used in this book:

Constant width
Used in the text to refer to class names, stereotypes, and other elements taken
from UML diagrams.

Constant width italic
Used in UML diagrams to indicate text that would be replaced by the user.

Italic
Used when new terms are introduced, and for URLs and file references.

Ellipses indicate nonessential material that has been omitted from a diagram
for the sake of readability.

Indicates a tip, suggestion, or general note.

Indicates an aspect of UML that you must be particularly careful
about using.

0 v

Note that UML makes frequent use of curly braces ({}) and guillemots («»).
When these are used in a syntax definition, they are required by UML.

Nearly everything in UML notation is optional, so there is no specific notation to
indicate an optional field. If a particular piece of syntax is required, it is noted in
the text.

Safari Enabled

= When you see a Safari® Enabled icon on the cover of your favorite
sa'arl technology book, it means the book is available online through the
svrem O Reilly Network Safari Bookshelf.

L ERANLY

Safari offers a solution that’s better than e-books. It’s a virtual
library that lets you easily search thousands of top tech books, cut and paste code
samples, download chapters, and find quick answers when you need the most
accurate, current information. Try it for free at http://safari.oreilly.com.

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

xvi | Preface

707-829-0515 (international/local)
707-829-0104 (fax)

There is a web page for this book that lists errata, examples, or any additional
information. You can access this page at:

http:/hwww.oreilly.com/catalogfumlinut2
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the
O’Reilly Network, see the O’Reilly web site at:

http://www.oreilly.com

Acknowledgments

From Dan

This book was truly a team effort. Without support, emails, comments, harass-
ment, and suggestions from friends, family, and colleagues, this book would not
have happened. First I'd like to thank my editor, Jonathan Gennick, for his aston-
ishing amount of patience. He is fantastic to work with and helped keep this book
on track.

Next, I'd like to thank the technical reviewers who were never short on sugges-
tions or comments. At times | felt like this was the fourth edition of the book,
after working in all their ideas. The tech reviewers were: Stephen Mellor, Michael
Chonoles, Mike Hudson, Bernie Thuman, Kimberly Hamilton, Russ Miles, and
Julie Webster.

Finally, I’d like to thank my family: my parents for supporting me from the start
and setting an example that has driven me in both my professional and personal
life, and my wife, Tracey, for somehow managing to hold everything together
while I wrote this book. Compared to the magic she has been working, writing
this book was a piece of cake. Last but not least, I'd like to thank my son Vinny:
now we can head to the park!

From Neil

I'd like to thank Ron Wheeler and Jacques Hamel of Artifact-Software for
allowing the use of XML examples. Thanks also to Derek McKee of Mindset
Corporation for the use of LamMDA examples. Finally, I'd like to especially thank
Jonathan Gennick for his depth of patience.

Preface | xvii

Table of Contents

1. Fundamentalsof UML
Getting Started
Background
UML Basics
UML Specifications
Putting UML to Work
Modeling
UML Rules of Thumb

2. QassDiagrams
Classes
Attributes
Operations
Methods
Abstract Classes
Relationships
Interfaces
Templates
Variations on Class Diagrams

3. PackageDiagrams
Representation
Visibility
Importing and Accessing Packages

38
38
39
40

Merging Packages 41

Variations on Package Diagrams 42

4. CompositeStructures il 48
Composite Structures 48
Collaborations 56
Collaboration Qccurrences 57

5. ComponentDiagramso, 59
Components 59
Component Views 60

6. DeploymentDiagrams 67
Artifacts 67
Nodes 69
Deployment 73
Variations on Deployment Diagrams 75

7. UseCaseDiagrams 77
Use Cases 77
Actors 78
Advanced Use Case Modeling 82
Use Case Scope 86

8. StatechartDiagrams 87
Behavioral State Machines 87
States 89
State Machine Extension 98
Protocol State Machines 98
Pseudostates 99
Event Processing 101
Variations on Statechart Diagrams 102

9. ActivityDiagrams 104
Activities and Actions 104
Tokens 111
Activity Nodes 111
Advanced Activity Modeling 118

10. InteractionDiagrams 128
What Are Interactions? 128
Interaction Participants 129

X | TableofContents

11.

12.

Messages

Execution Occurrences
State Invariants

Event Occurrences
Traces

Combined Fragments
Interaction Occurrences
Decomposition
Continuations
Sequence Timing
Alternate Interaction Notations

Tagged Values, Stereotypes, and UMLProfiles
Modeling and UML in Context

Stereotypes

Tagged Values

Constraints

UML Profiles

Tools and How They Use Profiles

EffectiveDiagramming
Wallpaper Diagrams

Sprawling Scope

One Diagram/One Abstraction

Besides UML

131
136
137
138
139
139
149
150
153
155
155

164
166
168
168
169
171

172
177
178
179.

Table of Contents

1]

Fundamentals of UML

On the surface, the Unified Modeling Language (UML) is a visual language for
capturing software designs and patterns. Dig a little deeper, though, and you’ll
find that UML can be applied to quite a few different areas and can capture and
communicate everything from company organization to business processes to
distributed enterprise software. It is intended to be a common way of capturing
and expressing relationships, behaviors, and high-level ideas in a notation that’s
easy to learn and efficient to write. UML is visual; just about everything in it has a
graphical representation. Throughout this book we’ll discuss the meaning behind
the various UML elements as well as their representations.

Getting Started

If you're new to UML, you should be sure to read this chapter all the way through
to get acquainted with the basic terminology used throughout the book. If you are
a developer, class diagrams tend to be the simplest diagrams to start with because
they map closely to code. Pick a program or domain you know well, and try to
capture the entities involved using classes. Once you're convinced you've modeled
the relationships between your entities correctly, pick a piece of functionality and
try to model that using a sequence diagram and your classes.

If you're more of a process person (business or otherwise), you may be more
comfortable starting with an activity diagram. Chapter 9 shows examples of
modeling business processes with different groups (Human Resources, 1T, etc.)
and progresses to modeling parallel processes over different geographic regions.

Background

UML has become the de facto standard for modeling software applications and is
growing in popularity in modeling other domains. Its roots go back to three
distinct methods: the Booch Method by Grady Booch, the Object Modeling

Technique coauthored by James Rumbaugh, and Objectory by Ivar Jacobson.
Known as the Three Amigos, Booch, Rumbaugh, and Jacobson kicked off what
became the first version of UML, in 1994. In 1997, UML was accepted by the
Object Management Group (OMG) and released as UML v1.1.

Since then, UML has gone through several revisions and refinements leading up to
the current 2.0 release. Each revision has tried to address problems and shortcom-
ings identified in the previous versions, leading to an interesting expansion and
contraction of the language. UML 2.0 is by far the largest UML specification in
terms of page count (the superstructure alone is over 600 pages), but it represents
the cleanest, most compact version of UML yet.

UML Basics

First and foremost, it is important to understand that UML is a language. This
means it has both syntax and semantics. When you model a concept in UML,
there are rules regarding how the elements can be put together and what it means
when they are organized in a certain way. UML is intended not only to be a picto-
rial representation of a concept, but also to tell you something about its context.
How does widget 1 relate to widget 22 When a customer orders something from
you, how should the transaction be handled? How does the system support fault
tolerance and security?

You can apply UML in any number of ways, but common uses include:

* Designing software

* Communicating software or business processes

* Capturing details about a system for requirements or analysis

* Documenting an existing system, process, or organization
UML has been applied to countless domains, including:

* Banking and investment sectors

* Health care

* Defense

* Distributed computing

* Embedded systems

* Retail sales and supply
The basic building block of UML is a diagram. There are several types, some with
very specific purposes (timing diagrams) and some with more generic uses (class
diagrams). The following sections touch on some of the major ways UML has
been employed. The diagrams mentioned in each section are by no means

confined to that section. If a particular diagram helps you convey your message
you should use it; this is one of the basic tenets of UML modeling.

Designing Software

Because UML grew out of the software development domain, it’s not surprising
that’s where it still finds its greatest use. When applied to software, UML

2 | Chapter1: Fundamentals of UML

attempts to bridge the gap between the original idea for a piece of software and its
implementation. UML provides a way to capture and discuss requirements at the
requirements level (use case diagrams), sometimes a novel concept for devel-
opers. There are diagrams to capture what parts of the software realize certain
requirements (collaboration diagrams). There are diagrams to capture exactly how
those parts of the system realize their requirements (sequence and statechart
diagrams). Finally there are diagrams to show how everything fits rogether and
executes (component and deployment diagrams).

Books describing previous versions of UML made a point to emphasize that UML
was not a visual programming language; you couldn’t execute your model.
However, UML 2.0 changes the rules somewhat. One of the major motivations for
the move from UML 1.5 to UML 2.0 was to add the ability for modelers to
capture more system behavior and increase tool automation. A relatively new
technique called Model Driven Architecture (MDA) offers the potential to develop
executable models that tools can link together and to raise the level of abstraction
above traditional programming languages. UML 2.0 is central to the MDA effort.

It is important to realize the UML is not a software process. It is meant to be used
within a software process and has facets clearly intended to be part of an iterative
development approach.

While UML was designed to accommodate automated design tools, it wasn’t
intended only for tools. Professional whiteboarders were kept in mind when UML
was designed, so the language lends itself to quick sketches and capturing “back
of the napkin” type designs.

Business Process Modeling

UML has an extensive vocabulary for capturing behavior and process flow.
Activity diagrams and statecharts can be used to capture business processes
involving individuals, internal groups, or even entire organizations. UML 2.0 has
notation that helps model geographic boundaries (activity partitions), worker
responsibilities (swim lanes), and complex transactions (statechart diagrams).

UML Specifications

Physically, UML is a set of specifications from the OMG. UML 2.0 is distributed
as four specifications: the Diagram Interchange Specification, the UML Infrastruc-
ture, the UML Superstructure, and the Object Constraint Language (OCL). All of
these specifications are available from the OMG web site, http:/fwww.omg.org.

The Diagram Interchange Specification was written to provide a way to share
UML models between different modeling tools, Previous versions of UML. defined
an XML schema for capturing what elements were used in a UML diagram, but
did not capture any information about how a diagram was laid out. To address
this, the Diagram Interchange Specification was developed along with a mapping
from a new XML schema to a Scalable Vector Graphics (SVG) representation.
Typically the Diagram Interchange Specification is used only by tool vendors,
though the OMG makes an effort to include “whiteboard tools.”

UML Spedfications | 3

The UML Infrastructure defines the fundamental, low-level, core, bottom-most
concepts in UML,; the infrastructure is a metamodel that is used to produce the
rest of UML. The infrastructure isn’t typically used by an end user, but it provides
the foundation for the UML Superstructure.

The UML Superstructure is the formal definition of the elements of UML, and it
weighs in at over 600 pages. This is the authority on all that is UML, at least as far
as the OMG is concerned. The superstructure documentation is typically used by
tool vendors and those writing books on UML, though some effort has been made
to make it human readable.

The OCL specification defines a simple language for writing constraints and
expressions for elements in a model. The OCL is often brought into play when
you specify UML for a particular domain and need to restrict the allowable values
for a parameter or object. Appendix B is an overview of the OCL.

It is important to realize that while the specification is the definitive source of the
formal definition of UML, it 1s by no means the be-all and end-all of UML. UML is
designed to be extended and interpreted depending on the domain, user, and
specific application. There is enough wiggle room in the specification to fit a data
center through it... this is intentional. For example, there are typically two or
more ways to represent a UML concept depending on what looks best in your
diagram or what part of a concept you wish to emphasize. You may choose to
represent a particular element using an in-house notation; this is perfectly accept-
able as far as UML is concerned. However, you must be careful when using
nonstandard notation because part of the reason for using UML in the first place
is to have a common representation when collaborating with other users.

Putting UML to Work

A UML model provides a view of a system—often just one of many views needed
to actually build or document the complete system. Users new to UML can fall
into the trap of trying to model everything about their system with a single
diagram and end up missing critical information. Or, at the other extreme, they
may try to incorporate every possible UML diagram into their model, thereby
overcomplicating things and creating a maintenance nightmare.

Becoming proficient with UML means understanding what each diagram has to
offer and knowing when to apply it. There will be many times when a concept
could be expressed using any number of diagrams; pick the one(s) that will mean
the most to your users.

Each chaprer of this book describes a type of diagram and gives examples of its
use. There are times when you may need to have more than one diagram to
capture all the relevant details for a single part of your system. For example, you
may need a statechart diagram to show how an embedded controller processes
input from a user as well as a timing diagram to show how the controller interacts
with the rest of the system as a result of that input.

You should also consider your audience when creating models. A test engineer
may not care about the low-level implementation (sequence diagram) of a compo-
nent, only the external interfaces it offers (component diagram). Be sure to

4 | (Chapter1: Fundamentals of UML

consider who will be using each diagram you produce and make it meaningful to
that person.

UML Profiles

In addition to a variety of diagram types, UML is designed to be extended. You
can informally extend UML by adding constraints, stereotypes, tagged values, and
notes to your models, or you can use the formal UML extension and define a full
UML profile. A UML profile is a collection of stereotypes and constraints on
elements that map the otherwise generic UML to a specific problem domain or
implementation. For example, there are profiles for CORBA, Enterprise Applica-
tion Integration (EAI), fault tolerance, database modeling, and testing. See
Chapter 11 for more information on UML 2.0 Profiles.

Modeling

1t should go without saying that the focus of UML is modeling. However, what
that means, exactly, can be an open-ended question. Modeling is a means to
capture ideas, relationships, decisions, and requirements in a well-defined nota-
tion that can be applied to many different domains. Modeling not only means
different things to different people, but also it can use different pieces of UML
depending on what you are trying to convey.

In general a UML model is made up of one or more diagrams. A diagram graphi-
cally represents things, and the relationships between these things. These things
can be representations of real-world objects, pure software constructs, or a
description of the behavior of some other object. It is common for an individual
thing to show up on multiple diagrams; each diagram represents a particular
interest, or view, of the thing being modeled.

Diagrams

UML 2.0 divides diagrams into two categories: structural diagrams and behavioral
diagrams. Structural diagrams are used to capture the physical organization of the
things in your system—i.e., how one object relates to another. There are several
structural diagrams in UML 2.0:

Class diagrams
Class diagrams use classes and interfaces to capture details about the entities
that make up your system and the static relationships between them. Class
diagrams are one of the most commonly used UML diagrams, and they vary
in detail from fully fleshed-out and able to generate source code to quick
sketches on whiteboards and napkins. Class diagrams are discussed in
Chapter 2.

Component diagrams
Component diagrams show the organization and dependencies involved in
the implementation of a system. They can group smaller elements, such as
classes, into larger, deployable pieces. How much detail you use in compo-
nent diagrams varies depending on what you are trying to show. Some people

Modeling | 5

simply show the final, deployable version of a system, and others show what
functionality is provided by a particular component and how it realizes its
functionality internally. Component diagrams are discussed in Chapter 5.

Compoasite structure diagrams

Composite structure diagrams are new to UML 2.0. As systems become more
complex, the relationships between elements grow in complexity as well.
Conceptually, composite structure diagrams link class diagrams and compo-
nent diagrams; they don’t emphasize the design detail that class diagrams do
or the implementation detail that composite structures do. Instead,
composite structures show how elements in the system combine to realize
complex patterns. Composite structures are discussed in Chapter 4.

Deployment diagrams
Deployment diagrams show how your system is actually executed and
assigned to various pieces of hardware. You typically use deployment
diagrams to show how components are configured at runtime. Deployment
diagrams are discussed in Chapter 6.

Package diagrams
Package diagrams are really special types of class diagrams. They use the
same notation but their focus is on how classes and interfaces are grouped
together. Package diagrams are discussed in Chapter 3.

Object diagrams
Object diagrams use the same syntax as class diagrams and show how actual
instances of classes are related at a specific instance of time. You use object
diagrams to show snapshots of the relationships in your system at runtime.
Object diagrams are discussed as part of class diagrams in Chapter 2.

Behavioral diagrams focus on the behavior of elements in a system. For example,
you can use behavioral diagrams to capture requirements, operations, and internal
state changes for elements. The behavioral diagrams are:

Activity diagrams
Activity diagrams capture the flow from one behavior or activity, to the next.
They are similar in concept to a classic flowchart, but are much more expres-
sive. Activity diagrams are discussed in Chapter 9.

Communication diagrams
Communication diagrams are a type of interaction diagram that focuses on
the elements involved in a particular behavior and what messages they pass
back and forth. Communication diagrams emphasize the objects involved
more than the order and nature of the messages exchanged. Communication
diagrams are discussed as part of interaction diagrams in Chapter 10.

Interaction overview diagrams
Interaction overview diagrams are simplified versions of activity diagrams.
Instead of emphasizing the activity at each step, interaction overview
diagrams emphasize which element or elements are involved in performing
that activity. The UML specification describes interaction diagrams as
emphasizing who has the focus of control throughout the execution of a

6 | Chapter1: Fundamentals of UML

