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Preface

In recent years, many students have been introduced to topology in high
school mathematics. Having met the Mobius band, the seven bridges of
Konigsberg, Euler’s polyhedron formula, and knots, the student is led to
expect that these picturesque ideas will come to full flower in university
topology courses. What a disappointment ‘““undergraduate topology”
proves to be! In most institutions it is either a service course for analysts,
on abstract spaces, or else an introduction to homological algebra in which
the only geometric activity is the completion of commutative diagrams.
Pictures are kept to a minimum, and at the end the student still does not
understand the simplest topological facts, such as the reason why knots exist.

In my opinion, a well-balanced introduction to topology should stress its
intuitive geometric aspect, while admitting the legitimate interest that
analysts and algebraists have in the subject. At any rate, this is the aim of the
present book. In support of this view, I have followed the historical develop-
ment where practicable, since it clearly shows the influence of geometric
thought at all stages. This is not to claim that topology received its main
impetus from geometric recreations like the seven bridges; rather, it resulted
from the visualization of problems from other parts of mathematics—
complex analysis (Riemann), mechanics (Poincaré), and group theory
(Dehn). It is these connections to other parts of mathematics which make
topology an important as well as a beautiful subject.

Another outcome of the historical approach is that one learns that
classical (prior to 1914) ideas are still alive, and still being worked out. In
fact, many simply stated problems in 2 and 3 dimensions remain unsolved.
The development of topology in directions of greater generality, complexity,
and abstractness in recent decades has tended to obscure this fact.

Attention is restricted to dimensions < 3 in this book for the following
reasons. /

(1) The subject m@,tt/er is close to concrete, physical experience.

(2) There is ample scope for analytic, geometric, and algebraic ideas.
(3) A variety of interesting problems can be constructively solved.
(4) Some equally interesting problems are still open.

(5) The combinatorial viewpoint is known to be completely general.
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The significance of (5) is the following. Topology is ostensibly the study of
-arbitrary continuous functions. In reality, however, we can comprehend
and manipulate only functions which relate finite *“chunks” of space in a
simple combinatorial manner, and topology originally developed on this
basis. It turns out that for figures built from such chunks (simplexes) of
dimension < 3, the combinatorial relationships reflect all relationships
which are topologically possible. Continuity is therefore a concept which can
(and perhaps should) be eliminated, though of course some hard foundational
work is required to achieve this.

I have not taken the purely combinatorial route in this book, since it
would be difficult to improve on Reidemeister’s classic Einfiihrung in die
Kombinatorische Topologie (1932), and in any case the relationship between
the continuous and the discrete is extremely interesting. I have chosen the
middle course of placing one combinatorial concept—the fundamental
group—on a rigorous foundation, and using others such as the Euler
characteristic only descriptively. Experts will note that this means abandon-
ing most of homology theory, but this is easily justified by the saving of space
and the relative uselessness of homology theory in dimensions < 3. (Further-
more, textbooks on homology theory are already plentiful, compared with
those on the fundamental group.)

Another reason for the emphasis on the fundamental group is that it
is a two-way street between topology and algebra. Not only does group
theory help to solve topological problems, but topology is of genuine help
in group theory. This has to do with the fact that there is an underlying
computational basis to both combinatorial topology and combinatorial
group theory. The details are too intricate to be presented in this book, but
the relevance of computation can be grasped by looking at topological
problems from an algorithmic point of view. This was a key concern of
early topologists and in recent times we have learned of the nonexistence of
algorithms for certain topological problems, so it seems timely for a topology
text to preser:it what is known in this department.

The book has developed from a one-semester course given to fourth
year students at Monash University, expanded to two-semester length. A
purely combinatorial course in surface topology and group theory, similar
to the one I originally gave, can be extracted from Chapters 1 and 2 and
Sections 4.3, 5.2, 5.3, and 6.1. It would then be perfectly reasonable to spend

.2 second semester deepening the foundations with Chapters 0 and 3 and
going on to 3-manifolds in Chapters 6, 7, and 8. Certainly the reader-is not
obliged to master Chapter 0 before reading the rest of the book. Rather, it
should be skimmed once and then referred to when needed later. Students
who have had a conventional first course in topology may not need 0.1-0.3
at all.

The only prerequisites are some familiarity with elementary set theory,
coordinate geometry and linear algebra, e-0 arguments as in rigorous
calculus, and the group concept.
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The text has been divided into numbered sections which are small
enough, it is hoped, to be easily digestible.. This has also made it possible
to dispense with some of the ceremony which usually surrounds definitions,
theorems, and proofs. Definitions are signalled simply by italicizing tae
terms being defined, and they and proofs are not numbered, since the section
number will serve to locate them and the section title indicates their content.
Unless a result already has a name (for example, the Seifert—Van Kampen
theorem) I have not given it one, but have just stated it and followed with the
proof, which ends with the symbol []. .

Because of the emphasis on historical development, there are frequent
citations of both author and date, in the form: Poincaré 1904. Since either
the author or the date may be operative in the sentence, the result is some-
times grammatically curious, but I hope the reader will excuse this in the
interests of brevity. The frequency of citations is also the result of trying to
give credit where credit is due, which I believe is just as appropriate in a
textbook as in a research paper. Among the references which I would
recommend as parallel or subsequent reading are Giblin 1977 (homology
theory for surfaces), Moise 1977 (foundations for combinatorial 2- and 3-
manifold theory), and Rolfsen 1976 (knot theory and 3-manifolds).

Exercises have been inserted in most sections, rather than being collected
at the ends of chapters, in the hope that the reader will do an exercise more
readily while his mind is still on the right track. If this is not sufficient
prodding, some of the results from exercises are used in proofs.

The text has been improved by the remarks of my students and from
suggestions by Wilhelm Magnus and Raymond Lickorish, who read parts
of earlier drafts and pointed out errors. I hope that few errors remain, but
any that do are certainly my fault. I am also indebted to Anne-Marie
Vandenberg for outstanding typing and layout of the original manuscript.

October 1980 JOHN C. STILLWELL



Contents

CHAPTER 0
Introduction and Foundations

0.1 The Fundamental Concepts and Problems of Topology
0.2 Simplicial Complexes

0.3 The Jordan Curve Theorem

0.4 Algorithms

0.5 Combinatorial Group Theory

CHAPTER 1

Complex Analysis and Surface Topology
1.1 Riemann Surfaces

1.2 Nonorientable Surfaces

1.3 The Classification Theorem for Surfaces
1.4 Covering Surfaces

CHAPTER 2
Graphs and Free Groups

2.1 Realization of Free Groups by Graphs
2.2 Realization of Subgroups

CHAPTER 3
Foundations for the Fundamental Group

3.1 The Fundamental Group

3.2 The Fundamental Group of the Circle
3.3 Deformation Retracts .

3.4 The Seifert-Van Kampen Theorem
3.5 Direct Products

CHAPTER 4
Fundamental Groups of Complexes
4.1 Poincaré’s Method for Computing Presentations’

4.2 Examples
4.3 Surface Complexes and Subgrcup Theorems

19
36

33

62
80

135
136
156



xii

CHAPTER 5
Homology Theory and Abelianization

5.1 Homology Theory

5.2 The Structure Theorem for Finitely Generated Abelian Groups

5.3 Abelianization

CHAPTER 6

Curves on Surfaces

6.1 Dehn’s Algorithm

6.2 Simple Curves on Surfaces

6.3 Simplification of Simple Curves by Homeomorphisms
6.4 The Mapping Class Group of the Torus

CHAPTER 7
Knots and Braids
7.1 Dehn and Schreier’s Analysis of the Torus Knot Groups

7.2 Cyclic Coverings
7.3 Braids

CHAPTER 8

Three-Dimensional Manifolds

8.1 Open Problems in Three-Dimensional Topology
8.2 Polyhedral Schemata

8.3 Heegaard Splittings

8.4 Surgery
3.5 Branched Coverings

Bibliography and Chronology

Index

Contents

169

170
175
181

185

186
190
196
206

217
218

233

241

242
248
252
263
270

275
287






2 0 Introduction and Foundations

0.1 The Fundamental Concepts and Problems of
Topology

0.1.1 The Homeomorphism Problem

Topology is the branch of geometry which studies the properties of figures
under arbitrary continuous transformations. Just as ordinary geometry
considers two figures to be the same if each can be carried into the other by
a rigid motion, topology considers two figures to be the same if each can be
mapped onto the other by a one-to-one continuous function. Such figures
are called topologically equivalent, or homeomorphic, and the problem of
deciding whether two figures are homeomorphic is called the homeomorphism
problem. :

One may consider a geometric figure to be an arbitrary point set, and in
fact the homeomorphism problem was first stated in this form, by Hurwitz
1897. However, this degree of generality makes the problem completely
intractable, for reasons which belong more to set theory than geometry,
namely the impossibility of describing or enumerating all point sets. To
discuss the problem sensibly we abandon the elusive “arbitrary point set”
and deal only with finitely describable figures, so that a solution to the
homeomorphism problem can be regarded as an algorithm (0.4) which
operates on descriptions and produces an answer to each homeomorphism
question in a finite number of steps.

The most convenient building blocks for constructing figures are the
simplest euclidean space elements in each dimension:

dimension 0: point
dimension 1: line segment
dimension 2: triangle
dimension 3: tetrahedron

We call the simplest space element in n-dimensional euclidean space R" the
n-simplex A". It is constructed by taking n + 1 points P,,..., P,4; in R"
which do not lie in the same (n — 1)-dimensional hyperplane, and forming
their convex hull; that is, closing the set under the operation which fills in
the line segment between any two points. In algebraic terms, we take n + 1
linearly independent vectors OP,,...,OP,., (where OP; denotes the
vector from the origin O to P;) and let A" consist of the endpoints of the
vectors 4\

xlOPl palhan xn+lOPn+1,

where x; + -+ + X,4; = 1l and x; > 0. It is now an easy exercise (0.1.1.1
below) to show that any two n-simplexes are homeomorphic, so we are
entitled to speak of the n-simplex A".
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Each subset of m + 1 points from {P,,..., P,,} similarly determines
an m-dimensional face A™ of A". The union of the (n — 1)-dimensional faces
is called the boundary of A", so all lower-dimensional faces lie in the boun-
dary. We shall build figures, called simplicial complexes, by pasting together
simplexes so that faces of a given dimension are either disjoint or coincide
completely. This method of construction, which is due to Poincaré 1899,
will be studied more thoroughly in 0.2. For the moment we wish to claim
that all “natural” geometric figures are either simplicial complexes o1
homeomorphic to them, which is just as good for topological purposes.

This claim is supported by some figures which play g prominent role in
this book—surfaces and knots. Surfaces may be constructed by pasting
triangles together, so they are simplicial complexes of dimension 2. For
example, the surface of a tetrahedron (which is homeomorphic to a sphere)
is a simplicial complex of four triangles as shown in Figure 1. The torus
surface (Figure 2) can be represented as a simplicial complex as shown in
Figure 3. The representation is of course not unique, and from this one begins
to see the combinatorial core of the homeomorphism problem, which remains
after the point set difficulties have been set aside. Given a description of a -
surface as a list of triangles and their edges, how does one assess its global
form? In particular, are the sphere and the torus topologically different?
In fact we know how to solve this problem (by the classification theorem of
1.3, and 5.3.3), but not the corresponding 3-dimensional problem.

Much of the difficulty in dimension 3 is due to the existence of knots.
We could define a knot to be any simple closed curve & in R, but any such

Figure 1

Figure 2
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Figure 3

X is homeomorphic to a circle and its “knottedness” actually resides in the
complement space R® — &". This space is not finitely describable in terms
of simplexes, so we replace R? by, say, a cube and drill a thin tube out of it
following the “knotted part” of " (see Figure 4). -

This figure can be divided into small tetrahedra and hence is a finite
simplicial complex representing the knot. The homeomorphism problem for
such figures is extraordinarily difficult; Riemann was perhaps the first to
think about it seriously (see Weil 1979), and it has been solved only recently
(see Hemion 1979, Waldhausen 1978). The solution extends to more general
“knot spaces” obtained by drilling any number of tubes out of cubes, but
not as yet to all the figures which result from pasting knot spaces together.

Z

)

Figure 4
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It seems very gratifying that the three dimensions provided by nature pose
such a strong mathematical challenge. Moreover, it is known (Markov
1958) that the homeomorphism problem cannot be solved in dimensions
>4, so we have every reason to concentrate our efforts in dimensions < 3.
This is the motivation for the present book. Our aim has been to give solu-
tions to the main problems in dimension 2, and to select results in dimension
3 which illuminate the homeomorphism problem and seem likely to remain
of interest if and when it is solved.

Like other fundamental problems in mathematics, the homeomorphism
problem turns out not to be accessible directly, but requires various detours,
some apparently technical and others of intrinsic interest. The first technical
detour, which is typical, takes us away from the relation “is homeomorphic
to” to the functions which relate homeomorphic figures. Thus we define a
homeomorphism f: o — % to be a one-to-one continuous function with a
continuous inverse f ~': # — < (in particular, f is a bijection). Then to say
o/ and # are homeomorphic is to say that there is a homeomorphism
fied = B v

This point of view enables us, to draw on general facts about continuous
functions, which are reviewed in 0.1.2. We wish to avoid specific functions
as far as possible, since topological properties by their nature do not reside
in single functions so much as in classes of functions which are “qualitatively
the same” in some sense. When we claim that there is a continuous function
with particular qualitative features, it will always be straightforward to
construct one by elementary means, such as piecing together finitely many
linear functions. Readers should reassure themselves of this fact before
proceeding too far, perhaps by working out explicit formulae for some of the
examples in 0.1.3 (but not the “map of the Western Europe”!).

ExEercist 0.1.1.1. Show that any two n-simpléxes are homeomorphic.

Exercise 0.1.1.2. Construct a homeomorphism between the surface of a tetrahedron
and the sphere.

0.1.2 Continuous Functions, Open and Closed Sets

The definition of a continuous function on R, the real line, is probably familiar.
We shall phrase this definition so that it applies to any space & for which
there is a distance function | P — Q| defined for all points P, Q. If &¥ = R",
which is the most general case we shall ultimately need, and if

=] e
Q= (yl’--',Yn),

we have

IP—Ql=(y =yl + - + (%, — ya)*
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Then f is continuous at P if for each & > 0 there is a J such that

[P—-0Ql <o ='1f(P)—f(O)<e ™
The function f is simply called continuous if it is continuous &t each point P
in its domain.

Informally, we say that a continuous function sends neighbouring points
to neighbouring points. In fact, if we define the &- nezghbourhood of a_point
"X to be

N(X)={YeF:|X — Y| <e¢&}

then (*) says that any neighbourhood of f(P) has all sufficiently small
neighbourhcods of P mapped into it by f. (An e-neighbourhood of a point is
often called a ball neighbourhood because this is the actual form of the
above set in the “typical” space R®. One can generalize A4, to any figure
in an obvious way. We later consider e-neighbourhoods of curves, which are
“strips” in R? and “tubes” in R?, and e-neighbourhoods of surfaces, which
are “plates.”)

A set 0 < & in which each point X has an A (X) < 0 is called open (in
&). Thus any space & is an open subset of itself, and the empty set (J is
open for the silly reason that it has no elements to contradict the definition.
More important examples are open intervals {xeR:a < x < b} in the
line R, and cartesian products of them in higher dimensions (rectangles
in R?, “hyperrectangles” in R").

The complement € = & — O of an open set 0 is called closed (in &).
The key property of a closed set is that it contains all its limit points. X'is a
limit pomt of a set 2 if every A (X) contains a point of 2 other than X
itself. It is immediate that a limit point X of % cannot lie in the open set
& — %.1If X is a limit point of both 2 and & — Dthen X is called a frontier
point of 2 and & — 2, and the set of frontier points is called the frontier
(of 2 and & — 2). For example, the frontier of an n-simplex A" in R" is
its boundary, while the frontier of a A™ in R", m < n, is A™ itself.

For every set &/ there is a smallest closed set &/ containing it, and called
its closure, and a largcst open set int(«/) contained in it, and .called its
interior.

We now review some important properties of continuous functions,
open sets, and closed sets.

€)) (Bolzano-Weierstrass theorem). A closed set €. = R" is bounded if and
only if every infinite subset 2 of € has a limit point (in €). !

If & is bounded, enclose it in a hyperrectangle and bisect repeatedly,
each time choosing a half containing infinitely many points of &. Doing this
so that all edge lengths of the hyperrectangle — 0 defines a point X whichis a
limit point of 2 by construction.

Conversely, if € is unbounded it contains a set 2 = {P;} of points such
that P, is at distance >1 from Py, ..., P,_, for each i, so 2 has no limit
point. £}
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(2) Two disjoint bounded closed sets €, €, have a non-zero distance

d(¥%,, €,) where
d(€,,%,) = inf{|P, — P,|: P,€¥,, P,€¥,}

If d(€,, €,) = 0 choose P{" € ¢, P}’ € ¥, for each n so that | P{" — PJ’|
< 1/n. If €,, €, are disjoint this distance is always >0, hence the sets {P{}
and {P{} are infinite and have limit points P,, P, (by the Bolzano-
Weierstrass Theorem) which are in €,, ¥, respectively since the sets are
closed. But then |P, — P,| > 0, which contradicts the fact that P, P,
are approached arbitrarily closely by P, PP which are arbitrarily close
to each other. O

A bounded closed set in R" is called compact. (By (1), an equivalent
definition is that a compact set contains a limit point of each of its infinite
subsets.) In many circumstances compact figures are equivalent to finite
ones in the sense of 0.1.1, and this allows combinatorial arguments to be
apphed to rather general figures. Two proposmons crucial to this “finitiza-
tion” process are:

(3) The continuous image of a compact set is compact.

Let f be a function continuous on a compact set . By (1) it will suffice
to show that every infinite 2 < f(%) has a limit point in €. If not, there is an
infinite set { f(X)} of points in f(%) with no limit point in f(%). But {X;}
has a limit point X € € by (1), and every neighbourhood of f(X) contains
points f(X;) by the continuity of f, so f(X) is a limit point of { f(X;)} and
we have a contradiction. ™ O

(4) A continuous function f on a compact set ¢ = R" is uniformly contmuous,
that is, for any € > O there is a 6 > 0 such that

X —Y|<d = |[f(X)—f(Y)l<e
regardless of the choice of X, Ye €.

Suppose on the contrary that there is no such é for some fixed &. Then
there are Xy, X,,...€¥ such that 4 4(X,) does not map into A (f(X,))
unless 6 < 1/n. Let X € € be a limit point of {X,, X, ...}, using (1). Since f
is continuous there is a > 0 such that A "4(X) maps into A", ,(f(X)).

Now for n sufficiently large we have not only X, € .4 5(X), but also
N1 m(X,) € N5(X), since X, approaches arbitrarily close to X. Thus
Ny n(X,) maps into A, ,(f(X)), and in particular f(X,)e A", ,(f(X)).
But then A", ,(f(X)) < 4, (f(X,)) and hence A", ,(X,) maps into A" (f(X})),
contrary to the choice of X,.- O

For example, a curve c is a continuous map of the compact interval
[0, 1], so by (4) we can divide [0, 1] into a finite number of subintervals (of
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A

Figure 5

length < &) whose images (subarcs of ¢) lie in e-neighbourhoods. If ¢ lies in a
figure with reasonable e-neighbourhoods (say e-balls, for ¢ sufficiently
small), these subarcs can be deformed into line segments as in Figure 5.
Thus ¢ is equivalent to a polygonal curve, up to deformation. The notion .of
deformation required for this finitization process will be defined precisely
in 0.1.9. : ' ;

Exercise 0.1.2.1. If f is one-to-one consider the ordering of points on the curve f(%)
induced by the natural order on the line interval %. Show that if f(%) meets a closed
set A then it has a first point of intersection with . ' (
ExERrciSE 0.1.2.2. The proofs of (1), (2), (3); (4) above use the Axiom of choice (where?).
This can be avoided by giving an explicit rule for choosing a point P(¥) from a closed
set # = R" Devise such a rule, starting in R%.

ExercisE 0.1.2.3. Construct a countable set of ball neighbourhoods in R, from-which
any open set is obtainable as the union of a subset. Deduce a rule for choosing a point
from an open set. . :

ExERcISE 0.1.2.4. Show that a continuous one-to-one function on a bounded closed set
has a continuous inverse (and hence is a homeomorphism).

Exercise 0.1.2.5. Show that an m-simplex is closed in any R", n >m.
“Exercise 0.1.2.6. Show that o = o U {limit poi"x!it‘s""of o} andint() = & — (P = ).

EXerciSE 0,1.2.7 (intermediate-value theorem). If f: [d, bl — R is continuous, prove
that f takes every value between f(a) and f(b). :

0.1.3 Exampiles of Continuous Maps

Although it is superfluous to introduce another name for functions, we often
call them maps, to emphasize the idea of a function as an image-forming
process. This is particularly appropriate in topology, which owes its existence
to the fact that some visual information is preserved even by arbitrary
homeomorphisms. Homeomorphisms, or topological maps, can be called
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“maps” with some justice, and we extend the usage by courtesy to other
continuous functions (though the continuous function which sends every-
thing to the same point is a poor sort of “map™!).

Interestingly, modern geography has expanded its concept of “map”
to virtually coincide with the general homeomorphism-concept. One now
sees maps in which each country is represented by a polygon, with area
proportional not to it§ actual area, but to some other quantity such as
population. The region being mapped nevertheless remains: recognizable,
mainly by the boundary relations between different countries, which are
topologically invariant. Western Europe, for example, is shown in Figure 6.

However, we should not push the geographic analogy too far, as this
can lead to the misconception that topology is just rubber sheet geometry,
in other words, that all homeomorphisms are deformations (defined precisely
as isotopies in 0.1.9). Once we leave the plane most of them are not—it is
quite in order to cut a figure, deform it, and then rejoin, provided that rejoin-
ing restores the neighbourhood of each point on the cut. The torus provides
a good illustration of this cut and paste method. In Figure 7 we cut the torus
along a meridian a, twist one edge of the cut through 2z relative to the other,
then rejoin. A small disc neighbourhood of any point on the cut is separated
into semidiscs at the first step, but reunited after the twist of 2=, so for any
e-neighbourhood on the final torus we can find a é-neighbourhood on the
initial torus which maps into it. The transformation therefore defines a
continuous one-to-one function, as does its inverse, so we have a homeo-
morphism f. It is intuitively clear that f cannot be realized by deformation
alone, in particular b cannot be deformed onto f(b). In fact, when one
studies homeomorphisms of the torus algebrancally (6.4) the deformations
are factored out as trivial.

Continuous maps which are not necessarlly one-to-one are also 1mportant
For example, a curve is nothing but a continuous map of a line segment. If

ol

Figure 6



