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Preface

This book presents an extensive analysis of reductive lie groups. The aim of this profound
book is to provide a comprehensive course on the topics of global study and establish
certain orbital applications of the integration on topological groups and their algebras
to harmonic analysis and induced representations in representation theory.

This book is a result of research of several months to collate the most relevant data in
the field.

When [ was approached with the idea of this book and the proposal to edit it, I was
overwhelmed. It gave me an opportunity to reach out to all those who share a common
interest with me in this field. I had 3 main parameters for editing this text:

1. Accuracy - The data and information provided in this book should be up-to-date
and valuable to the readers.

2. Structure - The data must be presented in a structured format for easy
understanding and better grasping of the readers.

3. Universal Approach - This book not only targets students but also experts and
innovators in the field, thus my aim was to present topics which are of use to all.

Thus, it took me a couple of months to finish the editing of this book.

I would like to make a special mention of my publisher who considered me worthy of
this opportunity and also supported me throughout the editing process. I would also like
to thank the editing team at the back-end who extended their help whenever required.

Editor
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Chapter 1

Introduction

I. 1. Introduction

In the study of the theory of irreducible unitary representations, is necessary to analyze and
demonstrate diverse results on integral orbital of functions belonging to the cohomology
Hi(g, K; V ® V,*), and that it is wanted they belong to the L( G)-cohomology of their reducible
unitary representations called discrete series. Then is necessary consider the Fréchet space 1(G),
and analyze the 2-integrability to the fibers of the space G/K, in spaces or locally compact
components of G/K. For it will be useful the invariance of the corresponding measures of
Haar under the actions of Ad(G), and the corresponding images of the Harish-Chandra
transform on the space of functions L(G).

Likewise, we will obtain a space in cuspidal forms that is an introspection of the class of the
discrete series in the whole space G.

This harmonic analysis in the context of the space in cuspidal forms is useful in the
exploration of the behavior of characters for those(s, K)-modules H(g, K; V ® V,*) and also for
the generalization of the integral formula of Plancherel on locally compact spaces of G.

The generalization of the Plancherel formula is useful for the study of the functions on
symmetrical spaces.

I. 2. Generalized spheres on Lie groups

We consider to G = L/Hs, a homogeneous space with origin o = {Hg}. Given goeG, let Lgobe the
subgroup of G, letting g fix, that is to say; the subgroup of isotropy of G, in go.

Def. 1. 2.1. A generalized sphere is an orbif Lgog, in G, of some point gG, under the subgroup
of isotropy in some point goeG.

In the case of a Lie group the generalized spheres are the left translations (or right) of their
conjugated classes.

We assume that Hg, and each Ly, is unimodular. But is considering Lgog = Lgo/(Lgo)g, such that
(Lgo)g, be unimodular then the orbit Lgog, have an invariant measure determined except for a
constant factor. Then are our interest the following general problems:
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a. To determine a function f, on G, in terms of their orbital integrals on generalized
spheres.

In this problem the essential part consist in the normalization of invariant measures on
different orbits.

If is the case in that Hg, is compact, the problem A), is trivial, since each orbit Lgog, have
finite invariant measure such that f(go) is given as the limit when g — gy, of the variation of f,
on Lg\)g.

I. 2.1, Orbits

Suppose that to every goeG, exist an open set Lg-invariant CgocG, containing go in their
classes such that to each geCgy, the group of isotropy (Lgo)s, is compact. The invariant
measure on the orbit Lgg (go€G, geCgo) can be normalized consistently as follows: We fix a
Haar measure dgo, on Lo (Hg = Lo). If go= g |0, we have Lg = gLog™,and we can to carry on
dgo, to the measure dgg,on Lg through of the conjugation z — gzg™ (zeLs). Since dgo, is bi-
invariant, dggog, is independent of the election of g satisfying go = g | o, the which is bi-
invariant. Since (Lgo)s, is compact, this have an only measure of Haar dggg with total
measure 1 and reason why dgo, and dggos, determine canonically an invariant measure p on
the orbitLgog = Lgn/ (Lgu)g.

Reason why also the following problem can to establish:

b. To express to f(go), in terms of the integralsj Lgsf(p)di(p), g€ Ceo.
that is to say, the calculus of the orbital integrals on those measurable open sets called orbits.

L. 3. Invariant measures on homogeneous spaces

Let G, a locally compact topological group. Then a left invariant measure on G, is a positive
measure, dg, on G, such that

Jof(xg)dg = Jof(g) dg, (L3.1)

vxeG, and all feC(G). If G, is separable then is acquaintance (Haar theorem) that such
measure exist and is unique except a multiplicative constant.

If G, is a Lie group with a finite number of components then a left invariant measure on G,
can be identified with a left invariant n-form on G (where dim G = n). If y,is a left
invariant non-vanishing n-form on G, then the identification is implemented by the
integration with regard to y, using the canonical method of differential geometry. If G, is
compact then we can (if is not specified) to use normalized left measures. This is those
whose measure total is 1.
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If dg is a left invariant measure and if xe G, then we can define a new left invariant measure
on G, Wy, as follows:

n(f) = [ef(xg)dg, (1.32)

The uniquely of the left invariant measure implies that

u(f) = 809Jcf(xg)dg, (I.3.3)

with 8, a function of x, which is usually called the modular function of G. If 3, is identically
equal to 1,then we say that G, is unimodular. If G is then unimodular we can call to a left
invariant measure (which is automatically right invariant) invariant, It is not difficult affirm
that 3, is a continuous homomorphism of G, in the multiplicative group of positive real
numbers. This implies that if G, is compact then G, is unimodular.

If G, is a Lie group, the modular function of G, is given by the following formula:

3(x) = |[det Ad(x)|, (1.3.4)
where Ad, is the usual adjunct action of G, on their Lie algebra.
Let M, be a soft manifold and be y, their form of volume. Let G, be a Lie group acting on M.
Then (g*u)x = c(g, X)ux, each geG, and xeM. If is left as exercise verify that c satisfies the
cocycle relationship
c(gh, x) = c(g, hx)c(h, x) V h, geG, xeM, (1.3.5)

We write as [y f(x)dx, to ] mf. The usual formula of change of variables implies that

Juf(gx)le(g, )ldx = [f(x)dx, 1.3.6)
to feC(G), and geG.

Let H, be a closed subgroup of G. Be M = G/H. We assume that G, have a finite number of
connect components. A G-invariant measure, dx, on M is a measure such that

_[Mf(gx)dx=,fmf(x)dx, vV feCd(G), geG (1.3.7)

If dx, comes of a form of volume on M, then (L. 3.7), is the same, which is equal to that
le(g, )| =1V geG, xeM.

If M, is a soft manifold then is well acquaintance that M, have a form of volume or M, have a
double covering that admit a form of volume. To rising of functions to the double covering
(if it was necessary) one can integrate relatively to a form of volume on any manifold. Come
back to the situation M = G/H, is not difficult demonstrate that M, admit a measure G-
invariant if and only if the unimodular function of G, restricted to H, is equal to the
unimodular function of H. Under this condition, a measure G-invariant on M is constructed
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as follow: Be g, the Lie algebra of G, and be |, the subalgebra of g, corresponding to H. Then
we can to identify the tangent space of 1H to M with g/h. The adjunct action of H, on g,
induces to action Ad”, of H, on g/h. The condition mentioned to obtain an identity in (L. 3. 7)
tell us that [Ad"(h)| = 1 YheH. Thus if HY, is the identity component of H, (as is usual) and if
K, is a element not vanishing of A™(g/h)*[3] (m = dim G/H) it is can to translate p, to a form of
G-invariant volume on G/H'.

Therefore for rising of functions of M, to G/H', is had an invariant measure on M. But the
Fubini theorem affirms that we can normalize dg, dh and dx, such that

lof(g)dg = Jom (uf(gh) dh) d(gH), feC(G) (I.3.8)

Let G, be a Lie group with a finite number of connects components. Let H, be a closed
subgroup of G, and let dh, be a selection of left invariant measure on H. The following result
is used in the calculus of measures on homogeneous spaces.

Lemma I. 2.1.If f, is a compactly supported continuous function on H/G, (note the change to
the right classes) then it exists, g, a continuous function supported compactly on such G, that

f(Hx) = [eg(hx) dh, (1.39)
This result is usually demonstrated using a “partition of the unit” as principal argument.
For details of demonstration see [1].
Let G, be a Lie group and be A, and B, subgroups in G, such that A, and B, are compact and
such that G = AB. The following result is used to the study of induced representations and

classes of induced cohomology.

Lemma I. 2.2.We asume that G, is unimodular. If da, is a left invariant measure on A, and db,
is a left invariant measure on B, then we can elect an invariant measure, dg, on G, such that

jcf(g) dg= IA .8f(ab) dadb, para feC{(G) (L. 3.10)

Proof: Consult [2]. ®

In the following section we will explain basic questions on invariant measures on
homogeneous spaces. With it will stay clear the concept and use of normalized measures.

Let G, be a Lie group with Lie algebra g; let H, a closed subgroup with Lie algebra h c g.
Each xeG, gives rise to an analytic diffeomorphism

t(x) :gH—->xgH, (I. 3.11)
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of G/H, onto itself. Let n, denote the natural mapping of G, onto G/H, and put o = n(e). If
heH, (dt(h)), is an endomorphism of the tangent space (G/H)o. For simplicity, we shall
write dt(h), instead of (dt(h))o, and dr, instead of (dr)e[4].

Lemma I. 2.3.

_ detAd (h)

det(dr(w) =———Cs o
H

(1.3.12)

YheH.

Proof. dr, is a linear mapping of g, onto (G/H)o, and has kernel . Let m, be any subspace of g,
such that g = § + m, (direct sum). Then dn, induces an isomorphism of m, onto (G/H)o. Let

Xem. Then Adg(h)X = dRn-1-dLn(X). Since mRn = 1, V heH, and neLg= 1(g) o1, ¥V geG, we
obtain
dr < Ade(h)X =dt(h) «dn(X), (L. 3.13)

The vector Adc(h)X, decomposes according to g =h +m,

Adc(h)X = X(h)s + X(h)m, (I.3.14)
The endomorphism
An: X = X(h)w, (L 3.15)
of m, satisfies
dm s Adn(X) = dr(h) «dn(X), (L. 3.16)

v Xem, so det An = det(dt(h)). For other side,

exp Adc(h)tT =h exp tTh™! = exp exp Adu(h)tT, (1.3.17)
for teR, Tel. Hence Adg(h)T = Adu(h)T, so

det Adc(h) = det Andet AdH(h), (1. 3.18)

and the lemma is proved. B
Proposition L 2.1. Let m = dim G/H. The following conditions are equivalent:

i.  G/H, has a nonzero G-invariant m-form o;

ii. det Adc(h)=det Adn(h), for heH.

If these conditions are satisfied, then G/H, has a G-invariant orientation and the G-invariant
m-form o, is unique up to a constant factor.
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Proof. Let o, be a G-invariant m-form on G/H,  # 0. Then the relation t(h)*® = o, [3] at the
point o, implies det(dt(h)) = 1, so ii), holds. For other side, let X1, ..., Xm, be a basis of (G/H),,
and let @', ..., ®™, be the linear functions on (G/H),, determined by o/(Xj) = 8i. Consider the
elementw'A...A0™, in the Grassmann algebra of the tangent space (G/H),. The condition ii),
implies that det(dt(h)) = 1, and the element ®'A...A0™ is invariant under the linear
transformation dz(h). It follows that exists a unique G-invariant m-form ®, on G/H, such that
0= O'A...A0™. If 0%, is another G-invariant m-form on G/H, then o* = fo, where feC*(G/H).
Owing to the G-invariance, f = constant.

Assuming i), let ¢ : p — (xi(p), ..., xm(p)), be a system of coordinates on an open connected
neighborhood U, of 0e G/H, on which o, has an expression
ou = F(x1,...,xm) dxiA.. . Adxm,
With F > 0, The pair (t(g)U, ¢ 0 1(g™")), is a local chart on a connected neighborhood of g e
0eG/H. We put (¢ o (g ))(p) = (y1(p), ..., ym(p)), for pet(g)U. Then the mapping
1(g) : U -»1(g)y,

has expression

(y1, ..oy ym) = (X1, ..., Xm).

On t(g)U, o, has an expression

O«x)U = G(y1,..., ym) dy1A. .. Adym,

and since mq= 1(g)*®«s)q, we have for qeU n1(g)U,

0q9=G(y1(q),..., ym(q)) (dy1a...Adym)q= G(x1(q), ..., xm(q)) (dX1A.. . AdXm)q,
Hence F(xi(q), ..., xn(q)) = G(xi(q), .., xm(q)), and

E(xu(q), ..., xm(q)) = F(y1(q),...., ym(@)[O(y1(Q)s-., ym(@WE(x1(q), -, Xm(Q))],
which shows that the Jacobian of the mapping (¢ 0 t(g ) 0 ¢ ', is positive. Consequently,
the collection (t(g)U, ¢ 0 t(g'))ses, of local charts turns G/H, into an oriented manifold and
each 1(g), is orientation preserving. Then G-invariant form o, now gives rise to an integral

J fo, which is invariant in the sense that

jG/H fo = ,[G/H (fot(g)o, VY geG.

However, just as the Riemannian measure did not require orientability; an invariant
measure can be construct on G/H, under a condition which is slightly more general than (ii).
The projectiveP?, will, for example, satisfy this condition whereas it does not satisfy (ii). We
recall that a measure p, on G/H, is said to be invariant (or more precisely G-invariant) if p(f o
1(g)) = u(f), for all geG. =
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Theorem 1. 2.1. Let G, be a Lie group and H, a closed subgroup. The following relation is
satisfied

|det Adc(h)| = |det Adn(h), heH, (L. 3.19)

Is a necessary and sufficient condition for the existence of a G-invariant positive measure on
G/H. This measure dgy, is unique (up to a constant factor) and

lcf(g)dg = Jam(lu f(gh)dh)dgn, v feC{G), (1. 3.20)

if the left invariant measures dg, and dh, are suitably normalized.

Proof [6], [1]
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Integrals, Functional and Special Functions on
Lie Groups and Lie Algebras

IL. 1. Spherical functions
Let P = Pg, be the minimal parabolic subgroup of G, with the Langlands decomposition

P ='MAN, (IL. 1.1)

If (5, H®), is an irreducible unitary representation of "M, and if pe(ac)*, then (n,, ,, H""), can
denote the corresponding representation in principal serie, H*", is equivalent with
Ix(o) = H®. Indeed, if H™¥, is a representation of K, then exist €G, such that ca*=a*, to a*, the
dual algebra of the algebra a c p, since always there is a maximal Abelian subalgebra in
p. Then Ik(op) = Ik(n) = H**. By the subcocient theorem to induced representations using the
Casselman theorem, is possible to construct an operator that go from Home k(V, H?), to Homa
k(V, H™"), that define an unitary equivalence between the representations in H°, and H™".
Then H?, and H”*¥, are equivalent representations as representations of the group K.

If feH’, that is to say, fe LA(®M/K), then f,(nak) = a"*"*f(k), ¥ neN, a€A, and keK.
If geG, and g = nak, with neN, ac A, and keK, then we can write n(g) = n, a(g) = a, k(g) =k.
The theory of real reductive groups implies that as functions on G, n, a, and k, are smooth
functions. We denote as 1, to the function on K, that is identically equal to 1.
Let yo, be the class of the trivial representations of K. Then is clear that

(H")x(yo) = CI, (I. 1.2)

If pe(ac)*, then we define E, for

Eu(g) =<m(g)l. 1>, (IL. 1.3)

Said extended function to all the subgroup K, come given as

=.(g) = [xa(kg)"*?dk, V geG (IL 1.4)
where 1,(g) = a(g)""”, and 1,(k) = a(kg)""*, ¥ geG, keK.

Proposition II. 1.1. If se W(g, a), then Zs,=Z, Vue(@co)*.



