: &g MORGAN &CLAYPOOL PUBLISHERS

Perfectly Matched Layer
(PML) for Computational

Electromagnetics

Jean-Pierre Bérenger

YNTHESIS LLECTURES ON
OMPUTATIONAL ELECTRO]\MGNETICS

stantine A. Balanis, Series Editor




Perfectly Matched Layer (PML) for

Computational Electromagnetics

Jean-Pierre Bérenger
Centre d’Analyse de Défense

Arcueil, France

SYNTHESIS LECTURES ON COMPUTATIONAL ELECTROMAGNETICS #8

.




Copyright © 2007 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations
in printed reviews, without the prior permission of the publisher.

Perfectly Matched Layer (PML) for Computational Electromagnetics
Jean-Pierre Bérenger

www.morganclaypool.com

ISBN: 1598290827 paperback
ISBN: 9781598290820  paperback

ISBN: 1598290835 ebook
ISBN: 9781598290837  ebook

DOI 10.2200/S00030ED1V01Y200605CEMO008

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON COMPUTATIONAL ELECTROMAGNETICS #8

Lecture #8
Series Editor: Constantine A. Balanis, Arizona State University

Series ISSN:  1932-1252  print
Series ISSN:  1932-1716 electronic

First Edition

10987654321



Perfectly Matched Layer (PML) for

Computational Electromagnetics




ABSTRACT

This lecture presents the perfectly matched layer (PML) absorbing boundary condition (ABC)
used to simulate free space when solving the Maxwell equations with such finite methods
as the finite difference time domain (FDTD) method or the finite element method. The
frequency domain and the time domain equations are derived for the different forms of PML
media, namely the split PML, the CPML, the NPML, and the uniaxial PML, in the cases
of PMLs matched to isotropic, anisotropic, and dispersive media. The implementation of the
PML ABC in the FDTD method is presented in detail. Propagation and reflection of waves
in the discretized FDTD space are derived and discussed, with a special emphasis on the
problem of evanescent waves. The optimization of the PML ABC is addressed in two typical
applications of the FDTD method: first, wave-structure interaction problems, and secondly,
waveguide problems. Finally, a review of the literature on the application of the PML ABC
to other numerical techniques of electromagnetics and to other partial differential equations of
physics is provided. In addition, a software package for computing the actual reflection from a
FDTD-PML is provided. It is available at www.morganclaypool.com/page/berenger.
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Introduction

Nowadays, computers have been used for several decades to solve the partial differential equa-
tions of physics. To this end, numerous computational methods have been developed. In the
field of electromagnetics, some, such as the asymptotic methods, solve an approximation of the
Maxwell equations. Others solve the exact Maxwell equations numerically, or a set equivalent
to the Maxwell equations. The latter methods are the most widely used. They can be grouped
into two classes: firstly the methods based on the solution of integral equations, secondly the
finite methods that solve the Maxwell equations in a direct manner by discretizing the physical
space with elementary volumes.

The integral equations have been extensively used since the 1960’s. They permit realistic
problems of practical interest to be solved with relatively modest computers. The most known
integral method is the method of moments developed by Harrington [1] in frequency domain.
The integral equations are equivalent to the Maxwell equations, the boundary conditions, and
the initial conditions of the problem to be solved. They are solved on part of the physical space
reduced to a surface or a region of space, depending on the problem. These numerical techniques
do not require absorbing boundary conditions (ABCs) and will no longer be mentioned in the
following.

Several finite methods have been developed for solving the Maxwell equations in a
discretized space. The most popular is the finite-difference time-domain method (FDTD)
introduced by K. S. Yee [2]. The finite volume method (FVTD), the transmission line matrix
(TLM) method, and the finite element method (FEM) are finite methods as well. With all these
numerical techniques the physical space is split into elementary cells, elements, or volumes, that
must be smaller than both the shortest wavelength of interest and the smallest details of the
geometry of the objects to be placed within the part of space of interest. Since the computers are
not able, and will never be able, to handle an infinite number of elementary cells or elements,
these methods only allow the Maxwell equations to be solved within a finite part of space. This
is inconsistent with the requirements of most problems of electromagnetics that are unbounded
problems. Consider for instance two typical problems of numerical electromagnetics, first the
calculation of the radiation pattern of an antenna, second the interaction of an incident wave
with a scattering structure. In both cases the radiated field propagates toward the free space
surrounding the structure of interest; in other words the physical boundary conditions should
be placed at infinity. If the Maxwell equations are solved within a finite volume bounded
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with arbitrary conditions, the solution is erroneous. In order to overcome such contradictory
requirements, that is a physical unbounded space to be replaced with a finite computational
domain, the so-called absorbing boundary conditions have been introduced.

The absorbing boundary conditions (ABCs) simulate or replace the infinite space that
surrounds a finite computational domain. The replacement is never perfect. The solution
computed within an ABC is only an estimate to the solution that would be computed within
a really infinite domain. Moreover, the ABCs cannot replace sources of electromagnetic fields,
they only absorb fields produced by sources located inside the surrounded domain. From this,
sources cannot be placed outside the ABCs. As a corollary, the ABCs can be implemented only
upon concave surfaces.

Various ABCs have been developed over the years in the field of electromagnetics, from
the extrapolation [3] or the radiating boundary [4] in the 1970’s to the perfectly matched layer
(PML) [5] and the complementary operators method (COM) [6] in the 1990’s. This lecture
is devoted to the presentation of the PML ABC, initially introduced in [5] for use with the
FDTD method. Since then, the PML. ABC has been the subject of numerous works reported
in the literature, with the objective of improving it, extending it to other numerical techniques
of electromagnetics, and extending it to the solution of partial differential equations governing
other domains of physics, such as acoustics, seismic, or hydrodynamics. The lecture is organized
as follows:

«  Chapter 1 discusses the requirements that must be fulfilled by the ABCs in view of

replacing a theoretical infinite space with a finite computational domain. This chapter

also reviews the ABCs that were used before the introduction of the PML ABC.

«  Chapter 2 introduces the PML concept in the two-dimensional case.

«  Chapter 3 extends the PML ABC to three dimensions and to general media. The
PML medium is interpreted in terms of stretched coordinates and dependent currents,
and the complex frequency shifted stretching factor is introduced.

«  Chapter 4 derives the different forms of time domain equations, namely the split PML,
the CPML, the NPML, the uniaxial PML, for a vacuum, lossy media, and more general
anisotropic and dispersive media.

«  Chapter 5 is devoted to the FDTD method. The FDTD equations are provided for the
various forms of PML media. Propagation and reflection of waves in the discretized
FDTD-PML space are derived theoretically and discussed, with a special emphasize
on the case of evanescent waves.

«  Chapter 6 presents the application of the PML ABC to two typical problems of
numerical electromagnetics solved with the FDTD method, namely a wave-structure
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interaction problem and a waveguide problem. The origin of spurious reflections from

the PML is discussed and remedies are given so as to optimize the PML performance.

Chapter 7 briefly reviews the extensions of the PML concept to other systems of

coordinates, other numerical techniques, and other partial differential equations of
physics.







CHAPTER 1

- The Requirements for the Simulation
of Free Space and a Review of Existing

Absorbing Boundary Conditions

Answering two questions is the principal objective of this introductory chapter. The first
question is: why is the simulation of free space needed in numerical electromagnetics? The
second one is: which requirements have to be satisfied by the methods that simulate free space?
In addition, the methods developed for simulating free space before the introduction of the
perfectly matched layer concept are briefly reviewed.

1.1  THE MAXWELL EQUATIONS AND THE BOUNDARY
CONDITIONS

The electric and magnetic fields E and H in material media are governed by the Maxwell

equations

—
— oH
Vx E=—pu——- (1.1a)
ot
0
V x 7—1)=£—+ (1.15)
ot
with two Gauss laws satisfied at any time:
V-uH=0 (1.24)
V.eF =p. (1.26)

Permittivity & and permeability 1 are scalar quantities in isotropic media and tensor quantities
in anisotropic media, J is a current density, and p is a charge density.

The Maxwell equations (1.1) are a set of two first-order partial differential equations
connecting the time derivatives of E and H fields to some partial space derivatives of their

(¥4t
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Initial time Later or final time

Finite volume

Maxwell
Equations

Boundary conditions

Initial conditions
atr =1ty
E(r, to)
H(r, t)

Fields at t > ¢,

E(r, 1)
H(r, 1)

A

FIGURE 1.1: Evolution on time of the electromagnetic field governed by the Maxwell equations within
a space domain bounded with boundary conditions

components. As known, this set of two equations can be merged into one second-order par-
tial differential equation, namely the wave equation. As any partial differential equation or
set of partial differential equations, the Maxwell equations are satisfied by an infinite num-
ber of solutions. In other words, there are an infinite number of physical problems that
satisfy Eqgs. (1.1). But there is only one solution that satisfies the following two additional

conditions:

(1) initial conditions, that is E and H fields impressed within a given volume at an initial
time,
(2) boundary conditions, thatis E and H fields impressed at any time upon the whole surface

enclosing the given volume.

The evolution in time of the initial E and H fields is governed by Egs. (1.1) in conjunction with
the boundary conditions. Initial E and H fields are physical fields that satisfy (1.2). It is trivial
to prove, by multiplying (1.1) with nabla operator, that the evolution in time preserves the
satisfaction of (1.2). Solving a problem of electromagnetics, especially by means of numerical
methods, consists of using the Maxwell equations (1.1) to advance in time the electromagnetic
fields within a given part of space bounded with impressed boundary conditions, from an initial
time to a later final time. This is summarized in Fig. 1.1. In principle, the finite methods are well
suited to the solution of such problems. The volume of interest is discretized with a finite number
of elementary volumes, called cells or elements, depending on the method. Nevertheless, an
important difficulty arises as using finite methods, because in most applications the domain is,
at least in theory, of infinite extent. This is discussed in the following.
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1.2 THEACTUAL PROBLEMS TO BE SOLVED WITH
NUMERICAL METHODS

Ideally, a problem well suited to finite methods is like in Fig. 1.1, with a domain of resolution
of the Maxwell equations as small as possible, limited to the region of interest, that is the
region where the field has to be computed. This allows the number of elementary volumes and
then the number of unknown fields to be as small as possible, or alternatively the discretization
of space to be as fine as possible. Unfortunately, most problems encountered in numerical
electromagnetics significantly differ from this ideal case. In most cases the domain of interest is
not bounded with an impressed boundary condition. Instead, the region of interest is open, at
least in part, to the surrounding free space. This means that the boundary condition is rejected
to infinity, or equivalently that the computational domain is, in theory, infinite.

A popular problem involving an infinite domain is the calculation of the radiation pattern
ofan antenna. Only fields in the vicinity of the antenna are needed—the far fields can be obtained
by a near-field to far-field transformation—but the antenna radiates in the surrounding free
space. If an arbitrary boundary condition is placed at a finite distance from the antenna, the
radiated field is reflected toward the inner domain, resulting in the addition of a spurious field
to the solution in the vicinity of the antenna. In theory, this difficulty could be overcome with
time domain methods, by working with a large domain in such a way that the fields reflected
from the arbitrary boundary enter the region of interest after the end of the calculation. In
actual applications, such a solution is not realistic, because the required computational domain
would be so large that the problem could not be handled by the computers. From this, for the
calculation of the field near an antenna with a finite method, the infinite space surrounding
the antenna must be replaced with an appropriate boundary condition placed at a distance as
short as possible from the antenna. This boundary condition must allow the fields computed
in the domain to be a satisfactory approximation to the fields that would be obtained if the
computational domain were infinite. Such a boundary condition is called an absorbing boundary
condition (ABC) because it must remove the reflection of fields toward the inner domain, that
is the ABC must absorb the radiated outgoing fields.

Problems that are close to antenna problems are the calculations of the interaction of an
incident wave with a structure of interest. Such problems include radar cross-section (RCS)
calculations and electromagnetic compatibility (EMC) calculations. The field scattered by the
structure is radiated toward the surrounding infinite space. An ABC placed as close as possible
to the structure is needed so as to replace the infinite free space and allow the overall domain
to be as small as possible. This permits the computational resources to be devoted to the use of
a discretization of the structure as fine as possible.

Besides problems open in totality to free space, there exist some problems that are
only partially open. Examples can be found in the field of waveguides where most of the
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computational domain is bounded with the walls of waveguides. The domain is in general only
open in one direction, for instance at one end of the waveguide. Nevertheless, an ABC is also

needed in such partially open problems so as to limit to a reasonable size the computational
domain.

1.3 THE REQUIREMENTS TO BE SATISFIED BY THE
ABSORBING BOUNDARY CONDITIONS

Let us consider the field radiated from a small dipole antenna. In spherical coordinates (7, 6,
@), the E and H fields are given by:

— jIle—J@rle 1 ; 1 ; 2
f(r, 0, p) = e [ZCOSO (— + Zﬂ) %, +sinf (—3 - = - 2—) _u)g]
r

4 gow P gl cr?  ?r
(1.3a)
I —jwr/c 1 »
—I-}(r,.ﬁ,(p): e A S —+£ 7¢ (1.3b)
4 r: " er

where o is the angular frequency, / is the dipole length, and [ is the magnitude of the current
upon the dipole. As known, far from the dipole (r > wavelength), the radiated field (1.3) is
like a homogeneous plane wave whose magnitude decreases as 1/7. Conversely, at distances of
the order of, or shorter than, the wavelength, the field is not homogeneous and its magnitude
rapidly decreases with distance.

The behavior of the field radiated by a dipole is general. Far from any radiating or
scattering structure the field is like a plane wave in a vacuum, with a magnitude decreasing
as 1/7. This is known as the Sommerfield radiation condition. Conversely, in the vicinity of
the structure the field is not homogeneous and rapidly decreases with distance and its form is
complex. Especially, this is the case around scattering structures stricken by an incident pulse.
Strongly evanescent fields are present at frequencies lower than the resonance of the structure,
up to a distance of the order of its size.

Other problems where evanescent fields are present near the domain of interest, are
waveguide problems. Within a waveguide, both traveling and evanescent waves can exist. Below
a cutoff angular frequency @ o the TE and TM modes are evanescent in the longitudinal
direction of the waveguide. As an example, within a parallel-plate guide each mode is the
superposition of two waves whose space dependence is of the form:

eﬂy(—coshxyenTsmhxx (14a)
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where x and y are the longitudinal and transverse directions, n = %1, and:
w?
sinh y = 4,/ —ueff _ 1, (1.45)
a2
with, for mode 7 and a guide of transverse size a:
niwec
Wcutoft = P (14()

From this brief overview of the fields radiated or scattered in typical open problems of numerical
electromagnetics, it appears that the requirements that an absorbing boundary condition must
satisfy strongly depend on its location with respect to the source of the field:

« if the ABC is placed far from the source, the ABC only has to absorb homogeneous
plane waves propagating with the speed of light ¢. In general the plane waves strike the
boundary at oblique incidence.

« if the ABC is placed in the vicinity of the source, the ABC must be able to absorb

nonhomogeneous evanescent waves. One might think that this requirement is more

severe than only absorbing homogeneous traveling waves.
Equivalently, the above can be reformulated as follows:

« ifthe ABC s only able to absorb homogeneous plane waves, it must be placed out of the

evanescent region surrounding the source (antenna, scattering structure, waveguide).

» if the ABC is able to absorb evanescent fields, it can be placed close to the source, in
the evanescent region. In that case, the overall computational domain is significantly
smaller.

1.4 THEEXISTING ABCs BEFORE THE INTRODUCTION OF
THE PML ABC

From a general point of view, there exist two categories of absorbing boundary conditions:

«  the global ABCs based on the fact that the field at any point on the boundary of a
given volume can be expressed as a retarded-time integral of the field upon a surface
enclosing all the sources [7]. Such global ABCs are computationally expensive and are
only marginally used in numerical electromagnetics [8].

e the local ABCs with which the field on the boundary is expressed as a function of the
field in the vicinity of the considered point, that is in function of the field at the closest
points of the mesh with finite methods. All the ABCs used in the past in computer

9




