


299790<

PROBLEM SOLVING
AND PROGRAM DESIGN
IN

Jeri R. Hanly

UNIVERSITY OF WYOMING

Elliot B. Koffman

TEMPLE UNIVERSITY

A
vy

Addison-Wesley Publishing Company

Reading, Massachusetts * Menlo Park, California ’- New York * Dén Mills, Ontario
Wokingham, England *+ Amsterdam ¢ Bonn * Sydney + ShMigaporermuiokyo:.: . Madsid
San Juan * Milan * Paris




Lynne Doran Cote Sponsoring Editor

Helen M. Wythe Senior Production Editor

Maite Suarez-Rivas and Anita Devine Assistant Editors
Lisa Delgado Text Designer

Tech-Graphics [llustrations

Eileen Hoff Cover Design Supervisor

Diana Coe Cover Design

Roy Logan Senior Manufacturing Manager

Michael and Sigrid Wile Composition

Library of Congress Cataloging-in-Publication Data
Hanly, Jeri R.
Problem solving and program design in C / Jeri R. Hanly, Elliot B.
Koffman. -- 2nd ed.
p- cm.
Includes index.
ISBN 0-201-59063-8
1. C (Computer program language) I. Koffman, Elliot B.
II. Title.
QA76.73.C15H363 1996
005.13'3--dc20 95-7320

CIP

The programs and applications presented in this book have been included for their
instructional value. They have been tested with care but are not guaranteed for any
particular purpose. The publisher does not offer any warranties or representations,
nor does it accept any liabilities with respect to the programs or applications.

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and
Addison-Wesley was aware of a trademark claim, the designations have been printed in
initial caps or all caps.

Copyright © 1996 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photo-
copying; recording, or otherwise, without the prior written permission of the publisher.

Printed in the United States of America.

3456789 10-DOC-989796

o

FPrya.

4



PROBLEM SOLVING
AND PROGRAM DESIGN




To our families
Brian, Eric, and
Kevin Hanly;
Caryn, Richard,
Deborah, and
Robin Koffman




T)is textbook teaches a disciplined approach to solving problems and to
applying widely accepted software engineering methods to design program solu-
tions as cohesive, readable, reusable modules. We present as an implementation
vehicle for these modules a subset of ANSI C—a standardized, industrial-
strength programming language known for its power and portability. This text
can be used for a first course in programming methods: It assumes no prior
knowledge of computers or programming. The text’s broad selection of case
studies and exercises allows an instructor to design an introductory program-
ming course in C for computer science majors or for students from a wide range
of other disciplines.

In preparing this new edition, we have made every effort to simplify the
presentation wherever possible, striving for more focused chapters. For example,
we have consolidated the coverage of relational, equality, and logical operators
in Chapter 4 where conditions are first needed for selection structures. We have
placed all three loop constructs in Chapter 5 along with the operators with side
effects (++, +=, and so on).

This edition discusses user-defined functions with input parameters earli-
er than did Edition 1, presenting these functions in Chapter 3 and using them
regularly thereafter. Besides expanding our coverage of ANSI C string library
functions, we have added coverage of enumerated types, functions as parame-
ters, stacks, and dynamic memory allocation. We also present several data struc-
tures composed of dynamically allocated nodes, including linked lists (used as
stacks, as queues, and as ordered lists) and binary trees.

An important style change in this new edition is the early introduction of
function prototypes. Consequently, our standard source file format in this edi-
tion is (1) preprocessor directives, (2) function prototypes, (3) function main,
and (4) other function definitions.

Using C to Teach Program Development

Two of our goals—teaching program design and teaching C—may be seen by
some as contradictory. C is widely perceived as a language to be tackled only
after one has learned the fundamentals of programming in some other, friendlier
language. The perception that C is excessively difficult is traceable to the his-
tory of the language. Designed as a vehicle for programming the UNIX operat-
ing system, C found its original clientele among programmers who understood
the complexities of the operating system and the underlying machine, and who
considered it natural to exploit this knowledge in their programs. Therefore, it is
not surprising that many textbooks whose primary goal is to teach C expose the

vii



Preface

student to program examples requiring an understanding of machine concepts
that are not in the syllabus of a standard introductory programming course.

In this text we are able to teach both a rational approach to program devel-
opment and an introduction to ANSI C because we have chosen the first goal as
our primary one. One might fear that this choice would lead to a watered-down
treatment of ANSI C. On the contrary, we find that the blended presentation of
programming concepts and of the implementation of these concepts in C cap-
tures a focused picture of the power of ANSI C as a high-level programming
language, a picture that is often blurred in texts whose foremost objective is the
coverage of all of ANSI C. Even following this approach of giving program
design precedence over discussion of C language features, we have arrived at a
coverage of the essential constructs of C that is quite comprehensive.

Pointers and the Organization of the Book

The order in which C language topics are presented is dictated by our view of
the needs of the beginning programmer rather than by the structure of the C pro-
gramming language. The reader may be surprised to discover that there is no
chapter entitled “Pointers.” This missing chapter title follows from our treatment
of C as a high-level language, not from a lack of awareness of the critical role of
pointers in C.

Whereas other high-level languages have separate language constructs for
output parameters and arrays, C openly folds these concepts into its notion of a
pointer, drastically increasing the complexity of learning the language. We sim-
plify the learning process by discussing pointers from these separate perspec-
tives where such topics normally arise when teaching other programming
languages, thus allowing a student to absorb the intricacies of pointer usage a
little at a time. Our approach makes possible the presentation of fundamental
concepts using traditional high-level language terminology—output parameter,
array, array subscript, string—and makes it easier for students without prior
assembly language background to master the many facets of pointer usage.

Therefore, this text has not one, but four chapters that focus on pointers.
Chapter 6 discusses the use of pointers as simple output and input/output para-
meters, Chapter 8 deals with arrays, Chapter 9 presents strings and arrays of
pointers, and Chapter 14 describes dynamic memory allocation. In addition,
Chapters 2 and 12 discuss file pointers.

New to this Edition: Applications Written in C

A new feature of this edition is a collection of brief articles presenting applica-
tions written in C. Included are descriptions of Vivo320, a video-conferencing
tool; LINEUP, a database system for criminal mug shots; and the Borland
C/C++ compiler. In addition, one article traces the history of the joint develop-
ment of UNIX and C.



Preface iX

Software Engineering Concepts

The book presents many aspects of software engineering. Some are explicitly
discussed and others are taught only by example. The connection between good
problem-solving skills and effective software development is established early
in Chapter 1 with a section that discusses the art and science of problem solving.
The five-phase software development method presented in Chapter 1 is used to
solve the first case study and is applied uniformly to case studies throughout the
text. Major program style issues are highlighted in special displays, and the
coding style used in examples is based on guidelines followed in segments of the
C software industry. There are sections in several chapters that discuss algo-
rithm tracing, program debugging, and testing.

Chapter 3 introduces procedural abstraction through selected C library
functions, parameterless void functions, and functions that take input parameters
and return a value. Chapters 4 and 5 include additional function examples, and
Chapter 6 completes the study of functions that have simple parameters. The
chapter discusses the use of pointers to represent output and input/output para-
meters, and Chapter 7 introduces the use of a function as a parameter. :

Case studies and sample programs in Chapters 6, 8, and 11 introduce by
example the concepts of data abstraction and of encapsulation of a data type and
operators. Chapter 13 presents C’s facilities for formalizing procedural and
data abstraction in personal libraries defined by separate header and implemen-
tation files.

The use of visible function interfaces is emphasized throughout the text. We
do not mention the possibility of using a global variable until Chapter 13, and then
we carefully describe both the dangers and the value of global variable usage.

Pedagogical Features

We employ several pedagogical features to enhance the usefulness of this book
as a teaching tool. Some of these features are discussed below.

End-of-Section Exercises Most sections end with a number of self-check
exercises. These include exercises that require analysis of program fragments as
well as short programming exercises. Answers to selected self-check exercises
appear at the back of the book; answers to the rest of the exercises are provided
in the instructor’s manual.

End-of-Chapter Exercises A set of quick-check exercises with answers
follows each Chapter Review. There are also review exercises whose solutions
appear in the instructor’s manual.

End-of-Chapter Projects Each chapter ends with a set of programming
projects. Answers to selected projects appear in the instructor’s manual.



X

Preface

Examples and Case Studies The book contains a wide variety of pro-
gramming examples. Whenever possible, examples contain complete programs
or functions rather than incomplete program fragments. Each chapter contains
one or more substantial case studies that are solved following the software
development method. Numerous case studies give the student glimpses of impor-
tant applications of computing, including database searching, business applica-
tions such as billing and sales analysis, word processing, environmental
applications such as radiation level monitoring and water conservation.

Syntax Display Boxes The syntax displays describe the syntax and
semantics of new C features and provide examples.

Program Style Displays The program style displays discuss major issues
of good programming style.

Error Discussions and Chapter Review Each chapter concludes with a
section that discusses common programming errors. A chapter review includes a
table of new C constructs.

Appendixes and Supplement

A reference table of ANSI C constructs appears on the inside covers of the
book, and the first appendix presents character set tables. Because this text
covers only a subset of ANSI C, the remaining appendixes play an especially
vital role in increasing the value of the book as a reference. Appendix B is an
alphabetized table of ANSI C library facilities. Appendix C gives a table show-
ing the precedence and associativity of all ANSI C operators; the operators not
previously defined are explained in this appendix. Throughout the book, array
referencing is done with subscript notation; Appendix D is the only coverage of
pointer arithmetic. Appendix E lists all ANSI C reserved words.

Source Code

An on-line version of the source code figures is available at our anonymous ftp
site. To access, set your ftp to aw. com. At the prompt, log in as anonymous
and use your internet address as the password. From there, you change to the
directory cd cseng/authors/hanly/csl.2e.

Instructor’s Manual

The Instructor’s Manual includes chapter by chapter summaries and sugges-
tions based on selected textbook figures. These are available via the aw. com ftp
site. You will need to contact your sales rep for the password. Please see direc-
tions above under “Source Code” on how to access this site.



Preface Xi

Solutions and Test Questions

Test questions and solutions to the internal self check, review questions and
selected programming projects are available by contacting your local Addison-
Wesley sales representative.

Acknowledgments

Many people participated in the development of this book. We thank especially
Cindy Johnson, who developed the articles on C applications, and Paul W.
Abrahams, Kenneth Pugh of Pugh-Killeen Associates, Oliver Jones of Vivo
Software Inc., and Michael R. Weisert of Borland International Inc., who pro-
vided the material for these articles. We thank Joan C. Horvath of the Jet
Propulsion Laboratory, California Institute of Technology, for contributing sev-
eral new programming exercises. We are grateful for the work of several Temple
University and University of Wyoming students and former students who helped
to verify the programming examples and who provided answer keys for the
host of exercises. These include Mark Thoney, Lynne Doherty, Andrew Wrobel,
Steve Babiak, Donna Chrupcala, Masoud Kermani, and Thayne Routh.

The principal reviewers were enormously helpful in suggesting improve-
ments and in finding errors. They include: Steve Allan, Utah State University;
Michael Beeson, San Jose State - Chico; John Lewis, Villanova University;
James Schmolze, Tufts University; Larry Sells, Oklahoma City University;
Travis Tull, University of Tulsa; Richard Weinand, Wayne State University; and
Beth Weiss, University of Arizona.

It has been a pleasure to work with the Addison-Wesley team in this
endeavor. The sponsoring editor, Lynne Doran Cote, provided much guidance
and encouragement throughout all phases of manuscript revision. Her assis-
tants, Maite Suarez-Rivas and Anita Devine, coordinated the review process
and the preparation of the instructor’s manual and handled a great variety of
other details. Helen Wythe supervised the design and production of the book,
while Tom Ziolkowski developed the marketing campaign.

J.R.H.
E.B.K.



1. Overview of Computers and Programming 1

Electronic Computers Then and Now 2
Introduction to Computer Hardware 5
Overview of Programming Languages 12
Processing a High-Level Language Program 14
The Software Development Method 17
Applying the Software Development Method 21
Case Study: Converting Miles to Kilometers 21
Chapter Review 24

2. Overview of C 27

NNN NDNNMDMDDN

NGO UhLON=—

C Language Elements 28

Variable Declarations and Data Types 35
Executable Statements 39

General Form of a C Program 49

Arithmetic Expressions 53

Case Study: Evaluating a Collection of Coins 61
Formatting Numbers in Program Output 67
Interactive Mode, Batch Mode, and Data Files 70
Common Programming Errors 75

Chapter Review 81

3. Top-Down Design with Functions 89

‘3.
3.

2
3

Building Programs from Existing Information 90
Case Study: Finding the Area and Circumference of a
Circle 91

Case Study: Computing the Weight of a Batch of Flat
Washers 94

Library Functions 99

Top-Down Design and Structure Charts 106

Case Study: Drawing Simple Diagrams 106



X1V Contents

Functions without Arguments 108
Functions with Input Arguments 119
Common Programming Errors 130
Chapter Review 130

Www
U b

4. Selection Structures: if and switch Statements 139

1 Control Structures 140

2 Conditions 140

3 The if Statement 152

.4 If Statements with Compound Statements 156

5 Decision Steps in Algorithms 160

Case Study: Water Bill Problem 160

6 More Problem Solving 170
Case Study: Water Bill with Conservation
Requirements 171

4.7 Nested if Statements and Multiple-Alternative

Decisions 173

4.8 The switch Statement 184

4.9 Common Programming Errors 190

Chapter Review 192

5. Repetition and Loop Statements 203

Repetition in Programs and the while Statement 204
Computing a Sum or Product in a Loop 208
Counting Loops and the for Statement 214
Conditional Loops 224
Loop Design 230
Nested Loops 238
The do-while Statement and Flag-Controlled
Loops 242
Problem Solving lllustrated 247
Case Study: Computing Radiation Levels 247
How to Debug and Test Programs 252

0 Common Programming Errors 255
Chapter Review 258

au U U?IUIUIUIUIUI
=90 0 NOUWLRLWN=



Contents XV

6. Modular Programming 269

6.1 Functions with Simple Output Parameters 270
6.2 Multiple Calls to a Function with Input/Output
Parameters 279
6.3 Scope of Names 285
6.4 Formal Output Parameters as Actual Arguments 287
6.5 A Program with Multiple Functions 291

Case Study: Arithmetic with Common Fractions 292
6.6 Debugging and Testing a Program System 302
6.7 Common Programming Errors 305
Chapter Review 306

7.1 Representation and Conversion of Numeric

Types 316

7.2 Representation and Conversion of type char 323
7.3 Enumerated Types 326

7.4 |terative Approximations 332

Case Study: Bisection Method for Finding Roots 334
7.5 Common Programming Errors 342

Chapter Review 343

Declaring and Referencing Arrays 356
Array Subscripts 360

Using for Loops for Sequential Access 362
Using Array Elements as Function Arguments 368
Array Arguments 371

Searching and Sorting an Array 385
Multidimensional Arrays 390

Array Processing lllustrated 396

Case Study: Analysis of Sales Data 397
Common Programming Errors 405
Chapter Review 407

@ 000000000000 Co
O ONOULLAWON=



xvi Contents

9. Strings 417

9.1 String Basics 418

9.2 String Library Functions: Assignment and
Substrings 424

9.3 longer Strings: Concatenation and Whole-Line
Input 433

9.4 String Comparison 438

9.5 Arrays of Pointers 441

9.6 Character Operations 447

9.7 String-to-Number and Number-to-String
Conversions 453

9.8 String Processing lllustrated 460
Case Study: Text Editor 460

9.9 Common Programming Errors 469
Chapter Review 471

10. Recursion 481

10.1 The Nature of Recursion 482
10.2 Tracing a Recursive Function 487
10.3 Recursive Mathematical Functions 495
10.4 Recursive Functions with Array and String
Parameters 501
Case Study: Finding Capital Letters in a String 502
Case Study: Recursive Selection Sort 505
10.5 Problem Solving with Recursion 508
Case Study: Operations on Sets 509
10.6 A Classic Case Study in Recursion: Towers
of Hanoi 517
10.7 Common Programming Errors 522
Chapter Review 524

11. Structure and Union Types 531

11.1 User-Defined Structure Types 532

11.2 Structure Type Data as Input and Output
Parameters 538

11.3 Functions Whose Result Values Are Structured 544



Contents Xxvii

11.4 Problem Solving with Structure Types 547
Case Study: A User-Defined Type for Complex
Numbers 548
11.5 Parallel Arrays and Arrays of Structures 556
Case Study: Universal Measurement Conversion 559
11.6 Union Types (Optional) 568
11.7 Common Programming Errors 575

Chapter Review 575

12. Text and Binary File Processing 585

12.1 Input/Output Files: Review and Further Study 586
12.2 Binary Files 594
12.3 Searching a Database 601
Case Study: Database Inquiry 601
12.4 Common Programming Errors 611
Chapter Review 612

13. Programming in the Large 621

13.1 Using Abstraction to Manage Complexity 622
13.2 Personal Libraries: Header Files 625
13.3 Personal Libraries: Implementation Files 630
13.4 Storage Classes 633
13.5 Modifying Functions for Inclusion in a Library 639
13.6 Conditional Compilation 642
13.7 Arguments to Function main 647
13.8 Defining Macros with Parameters 649
13.9 Common Programming Errors 654

Chapter Review 655

14. Dynamic Data Structures 663

14.1 Pointers and the Functions malloc and calloc 664
14.2 Llinked Lists 671

14.3 Linked List Operators 677

14.4 Representing a Stack with a Linked List 683
14.5 Representing a Queue with a Linked List 687



xviii Contents

14.6 Ordered Lists 693
Case Study: Maintaining an Ordered List of
Integers 694

14.7 Binary Trees 705

14.8 Common Programming Errors 716
Chapter Review 716

Appendixes

A Character Sets AP1

B ANSI C Standard Libraries AP3
€ C Operators AP21

D Pointer Arithmetic AP27

E ANSI C Reserved Words AP29

Answers Al



Overview of Computers

and Programming

c h apter

1.1 Electronic Computers Then and Now
1.2 Introduction to Computer Hardware
1.3 Overview of Programming Languages

1.4 Processing a High-Level Language
i.s The Software Development Method
1.6 Applying the Software Development

Method
Case Study: Converting Miles to Kilometers

Chapter Review




