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T)is textbook teaches a disciplined approach to solving problems and to
applying widely accepted software engineering methods to design program solu-
tions as cohesive, readable, reusable modules. We present as an implementation
vehicle for these modules a subset of ANSI C—a standardized, industrial-
strength programming language known for its power and portability. This text
can be used for a first course in programming methods: It assumes no prior
knowledge of computers or programming. The text’s broad selection of case
studies and exercises allows an instructor to design an introductory program-
ming course in C for computer science majors or for students from a wide range
of other disciplines.

In preparing this new edition, we have made every effort to simplify the
presentation wherever possible, striving for more focused chapters. For example,
we have consolidated the coverage of relational, equality, and logical operators
in Chapter 4 where conditions are first needed for selection structures. We have
placed all three loop constructs in Chapter 5 along with the operators with side
effects (++, +=, and so on).

This edition discusses user-defined functions with input parameters earli-
er than did Edition 1, presenting these functions in Chapter 3 and using them
regularly thereafter. Besides expanding our coverage of ANSI C string library
functions, we have added coverage of enumerated types, functions as parame-
ters, stacks, and dynamic memory allocation. We also present several data struc-
tures composed of dynamically allocated nodes, including linked lists (used as
stacks, as queues, and as ordered lists) and binary trees.

An important style change in this new edition is the early introduction of
function prototypes. Consequently, our standard source file format in this edi-
tion is (1) preprocessor directives, (2) function prototypes, (3) function main,
and (4) other function definitions.

Using C to Teach Program Development

Two of our goals—teaching program design and teaching C—may be seen by
some as contradictory. C is widely perceived as a language to be tackled only
after one has learned the fundamentals of programming in some other, friendlier
language. The perception that C is excessively difficult is traceable to the his-
tory of the language. Designed as a vehicle for programming the UNIX operat-
ing system, C found its original clientele among programmers who understood
the complexities of the operating system and the underlying machine, and who
considered it natural to exploit this knowledge in their programs. Therefore, it is
not surprising that many textbooks whose primary goal is to teach C expose the
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Preface

student to program examples requiring an understanding of machine concepts
that are not in the syllabus of a standard introductory programming course.

In this text we are able to teach both a rational approach to program devel-
opment and an introduction to ANSI C because we have chosen the first goal as
our primary one. One might fear that this choice would lead to a watered-down
treatment of ANSI C. On the contrary, we find that the blended presentation of
programming concepts and of the implementation of these concepts in C cap-
tures a focused picture of the power of ANSI C as a high-level programming
language, a picture that is often blurred in texts whose foremost objective is the
coverage of all of ANSI C. Even following this approach of giving program
design precedence over discussion of C language features, we have arrived at a
coverage of the essential constructs of C that is quite comprehensive.

Pointers and the Organization of the Book

The order in which C language topics are presented is dictated by our view of
the needs of the beginning programmer rather than by the structure of the C pro-
gramming language. The reader may be surprised to discover that there is no
chapter entitled “Pointers.” This missing chapter title follows from our treatment
of C as a high-level language, not from a lack of awareness of the critical role of
pointers in C.

Whereas other high-level languages have separate language constructs for
output parameters and arrays, C openly folds these concepts into its notion of a
pointer, drastically increasing the complexity of learning the language. We sim-
plify the learning process by discussing pointers from these separate perspec-
tives where such topics normally arise when teaching other programming
languages, thus allowing a student to absorb the intricacies of pointer usage a
little at a time. Our approach makes possible the presentation of fundamental
concepts using traditional high-level language terminology—output parameter,
array, array subscript, string—and makes it easier for students without prior
assembly language background to master the many facets of pointer usage.

Therefore, this text has not one, but four chapters that focus on pointers.
Chapter 6 discusses the use of pointers as simple output and input/output para-
meters, Chapter 8 deals with arrays, Chapter 9 presents strings and arrays of
pointers, and Chapter 14 describes dynamic memory allocation. In addition,
Chapters 2 and 12 discuss file pointers.

New to this Edition: Applications Written in C

A new feature of this edition is a collection of brief articles presenting applica-
tions written in C. Included are descriptions of Vivo320, a video-conferencing
tool; LINEUP, a database system for criminal mug shots; and the Borland
C/C++ compiler. In addition, one article traces the history of the joint develop-
ment of UNIX and C.
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Software Engineering Concepts

The book presents many aspects of software engineering. Some are explicitly
discussed and others are taught only by example. The connection between good
problem-solving skills and effective software development is established early
in Chapter 1 with a section that discusses the art and science of problem solving.
The five-phase software development method presented in Chapter 1 is used to
solve the first case study and is applied uniformly to case studies throughout the
text. Major program style issues are highlighted in special displays, and the
coding style used in examples is based on guidelines followed in segments of the
C software industry. There are sections in several chapters that discuss algo-
rithm tracing, program debugging, and testing.

Chapter 3 introduces procedural abstraction through selected C library
functions, parameterless void functions, and functions that take input parameters
and return a value. Chapters 4 and 5 include additional function examples, and
Chapter 6 completes the study of functions that have simple parameters. The
chapter discusses the use of pointers to represent output and input/output para-
meters, and Chapter 7 introduces the use of a function as a parameter. :

Case studies and sample programs in Chapters 6, 8, and 11 introduce by
example the concepts of data abstraction and of encapsulation of a data type and
operators. Chapter 13 presents C’s facilities for formalizing procedural and
data abstraction in personal libraries defined by separate header and implemen-
tation files.

The use of visible function interfaces is emphasized throughout the text. We
do not mention the possibility of using a global variable until Chapter 13, and then
we carefully describe both the dangers and the value of global variable usage.

Pedagogical Features

We employ several pedagogical features to enhance the usefulness of this book
as a teaching tool. Some of these features are discussed below.

End-of-Section Exercises Most sections end with a number of self-check
exercises. These include exercises that require analysis of program fragments as
well as short programming exercises. Answers to selected self-check exercises
appear at the back of the book; answers to the rest of the exercises are provided
in the instructor’s manual.

End-of-Chapter Exercises A set of quick-check exercises with answers
follows each Chapter Review. There are also review exercises whose solutions
appear in the instructor’s manual.

End-of-Chapter Projects Each chapter ends with a set of programming
projects. Answers to selected projects appear in the instructor’s manual.
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Examples and Case Studies The book contains a wide variety of pro-
gramming examples. Whenever possible, examples contain complete programs
or functions rather than incomplete program fragments. Each chapter contains
one or more substantial case studies that are solved following the software
development method. Numerous case studies give the student glimpses of impor-
tant applications of computing, including database searching, business applica-
tions such as billing and sales analysis, word processing, environmental
applications such as radiation level monitoring and water conservation.

Syntax Display Boxes The syntax displays describe the syntax and
semantics of new C features and provide examples.

Program Style Displays The program style displays discuss major issues
of good programming style.

Error Discussions and Chapter Review Each chapter concludes with a
section that discusses common programming errors. A chapter review includes a
table of new C constructs.

Appendixes and Supplement

A reference table of ANSI C constructs appears on the inside covers of the
book, and the first appendix presents character set tables. Because this text
covers only a subset of ANSI C, the remaining appendixes play an especially
vital role in increasing the value of the book as a reference. Appendix B is an
alphabetized table of ANSI C library facilities. Appendix C gives a table show-
ing the precedence and associativity of all ANSI C operators; the operators not
previously defined are explained in this appendix. Throughout the book, array
referencing is done with subscript notation; Appendix D is the only coverage of
pointer arithmetic. Appendix E lists all ANSI C reserved words.

Source Code

An on-line version of the source code figures is available at our anonymous ftp
site. To access, set your ftp to aw. com. At the prompt, log in as anonymous
and use your internet address as the password. From there, you change to the
directory cd cseng/authors/hanly/csl.2e.

Instructor’s Manual

The Instructor’s Manual includes chapter by chapter summaries and sugges-
tions based on selected textbook figures. These are available via the aw. com ftp
site. You will need to contact your sales rep for the password. Please see direc-
tions above under “Source Code” on how to access this site.
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Solutions and Test Questions

Test questions and solutions to the internal self check, review questions and
selected programming projects are available by contacting your local Addison-
Wesley sales representative.
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