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Multiple-conclusion Logic



Preface

Logic is the science of argument, but ordinary arguments are
lopsided: they can have any number of premisses but only one
conclusion. In multiple-conclusion logic we allow any number
of conclusions as well, regarding them (in Kneale®s phrase)
as setting out the field within which the truth must lie if
the premisses are to be accepted. Thus we count a step in
such an argument as valid if it is impossible for all its
premisses to be true but all its conclusions false. Anything
that can be said about premisses can now be said, mutatis
mutandis, about conclusions. (For example, just as adding a
member to a set of propositions makes more things follow from
them, i.e. strengthens them as potential premisses, so it
makes them follow from more things, i.e. weakens them as po-
tential conclusions.) The subject owes much of its interest
to the exploitation of this formal symmetry, while the con-
trasts between multiple- and single-conclusion calculi throw

a fresh light on the conventional logic and its limitations.

Our subject is in its infancy. Its germ can be found in
Gerhard Gentzen®s celebrated Untersuchungen iber das logische
Schliessen (1934) if one is prepared to interpret his calculus
of ¢sequents? as a metatheory for a multiple-conclusion logic,
but this is contrary to Gentzen?s own interpretation, and it
was Rudolf Carnap who first consciously broached the subject
in his book Formalization of logic (1943). Carnap defined

consequence and introduced rules of inference for multiple
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conclusions, but the first attempt to devise a proof tech-
nique to accommodate such rules was made by William Kneale in

his paper The province of logic (1956).

Logicians in the subsequent decades appear to have ignored
the lead of Carnap and Kneale. Doubtless this is because
Kneale was mathematically an outsider and Carnap®s jargon
deterred even insiders; but doubtless too it reflects the
prevalent conception of logic as the study of logical truth
rather than logical consequence, and the property of theorem—
hood (deducibility from axioms) rather than the relation of
deducibility in general. Such a climate is bound to be un-
congenial to the development of multiple-conclusion logic,
whose parity of treatment between premisses and conclusions
calls for the more general approach from the outset. The
reception given to Carnap's book by Church (1944) in his re-
view is a notable case in point; but some recent Gentzen-
inspired work on multiple and single conclusions by Dana
Scott, which we cite at the appropriate places in the text,

is one of a number of welcome signs that things are changing.

Our book is in four parts, of which the second and third are
independent of one another. The aim of Part I is to redefine
the fundamental logical ideas so as to take account of mul-
tiple conclusions. We begin by recalling four methods of de-
fining consequence for single-conclusion calculi, and abstract
from them to produce four different though ultimately equiva-
lent criteria for a relation to be a possible consequence re-
lation. We then devise the appropriate multiple-conclusion
analogues, paying special attention to the definition of
proof and the somewhat complex sense in which consequence
with multiple conclusions is transitive. For both kinds of
calculus we discuss the theory of axiomatisability, which

surprisingly is less straightforward for single-conclusion
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calculi than it is either for theories (sets of theorems) or
for multiple-conclusion calculi; the idea of consequence by
rules of inference, where this is defined in advance of any
ideas of proof and indeed is used as a criterion for their
adequacy; and rules with infinitely many premisses or con-

clusions.

The other main theme of Part I is the connection between
multiple- and single-conclusion logic. It turns out that each
multiple-conclusion calculus has a unique single-conclusion
part, but each single-conclusion calculus has a range of mul-
tiple-conclusion counterparts. We investigate the composition
of these ranges, the extent to which the properties of cal-
culi of one kind can be predicted from their counterpart or

counterparts of the other kind, and the connection between

multiple conclusions and disjunction.

Part II starts from the observation that for an argument to
be valid it is not enough that each of its component steps
is valid in isolation: they must also relate to one another
properly. In order to discuss this generally overlooked in-
gredient of validity we need a way of formalising arguments
that displays their steps explicitly and unambiguously, and
for this purpose we introduce the idea of an argument as a
graph of formulae. This representation makes it possible to
define the form of an argument (¢form® being construed not
with reference to any particular vocabulary of logical con-
stants but as something shared by arguments of altogether
different vocabularies) in purely syntactic terms. On the
other hand our criterion of validity is ultimately semantic,
involving the idea of consequence by rules introduced in
Part I. We therefore investigate the connection between form
and validity, looking for syntactic conditions for validity,

trying to determine the adequacy or otherwise of various syn-
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tactically defined classes of proof, and discussing such
topics as conciseness and relevance. We do this first for
multiple-conclusion arguments (showing incidentally that
Kneale®s definition of proof is inadequate), then for single-

conclusion ones and finally for arguments by infinite rules.

Our treatment of the subject so far is less concerned with
particular calculi than with features of consequence and

proof common to them all, but the remainder of the book in-
troduces two specific applications. In Part III we make a
detailed comparison between the multiple- and single-conclu-
sion treatment of a particular topic. We choose many-valued
logic as our example because it is well known and accessible,
but there is also a historical reason. For it was Carnap?’s
discovery of ¢non-normal?® interpretations of the classical
propositional calculus - interpretations which fit the cal-
culus but not the normal truth-tables - that led him to advo-
cate multiple conclusions as the only fully satisfactory means
of capturing truth-functional logic. We therefore include
two-valued calculi in our discussion of many-valued ones, and
investigate the multiple-conclusion counterparts of the clas-
sical calculus along with those of many-valued calculi in
general. We show that every finite-valued multiple-conclusion
propositional calculus is finitely axiomatisable and categorical
(though virtually no single-conclusion calculus is categorical);
and we pose the many-valuedness problem - the problem of dis-
tinguishing many-valued calculi from the rest by some intrinsic
feature of their consequence relations. In general it seems
that distinctions which were blurred in the single-conclusion
case become sharp in the multiple-conclusion one, and results
which needed qualification become unconditional. On the other
hand it appears that a single-conclusion calculus displays a
stability when its vocabulary is enlarged which a multiple-

conclusion one may not; and one result of this is that we have
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had to leave the many-valuedness problem open for multiple-
conclusion calculi though it is solved for single-conclusion

ones.

In Part IV we explore the possibility of replacing the indirect
methods of ¢natural deduction® by direct proofs using multiple-
conclusion rules, and with it the possibility of obtaining
within our theory such results as the subformula theorem. We
illustrate these ideas for the classical predicate calculus

in a purely rule-theoretic context, and in a proof-theoretic
one (presupposing some of the ideas of Part II) for the in-

tuitionist propositional calculus.

Our results are published here for the first time apart from

a short abstract (1973), but we have worked together on and

off over six years and Chapter 19 has its origin in Shoesmith?s
Ph.D. dissertation (1962). We are much indebted to the trustees
of the Radcliffe Trust for giving one of us a welcome relief
from the pressures of other work by their award of a Radcliffe

Fellowship to Smiley for 1970 and 1971.

Cambridge, 1976

We have taken the opportunity provided by a reprinting to make
some minor corrections, and to remedy our misuse of the term

‘recursive proof procedure? in Chapter 4, replacing it by

‘recursive notion of proof?.

Cambridge, 1979
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Introduction

A multiple-conclusion proof can have a number of conclusions,
say Bl""’Bn' It is not to be confused with a conventional
proof whose conclusion is some one of the Bj’ nor is it a
bundle of conventional proofs having the various Bj for their
respective conclusions: none of the B. need be ¢the” conclu-
sion in the ordinary sense. This fact led Kneale to speak of
the ¢limits? of a ¢development® of the premisses instead of
the conclusions of a proof from them. We prefer to extend
the sense of the existing terms, but hope to lessen one
chance of misconstruction by speaking of a proof from
Al""’Am to Bl""’Bn instead of a proof of Bl,...,Bn from
Al""’Am'

The behaviour of multiple conclusions can best be understood
by analogy with that of premisses. Premisses function
collectively: a proof from Al,...,Am is quite different from
a bundle of proofs, one from Al’ another from A2 and so on.
Moreover they function together in a conjunctive way: to say
that B follows from Al""’Am is to say that B must be true
if Al and ... and Am are true. Multiple conclusions also
function collectively, but they do so in a disjunctive way:
to say that Bl""’Bn follow from Al”"’Am is to say that

B1 Or ... OT Bn must be true if all the Ai are true.

It should not be inferred from this explanation that multiple

conclusions can simply be equated with the components of a
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single disjunctive conclusion Blv"'an' The objections to
such a facile reduction of multiple— to single-conclusion
logic are the same as the objections to reducing the con-
ventional logic to a logic of single premisses. It is true
that any finite set of premisses is equivalent to a single
conjunctive one, Al""’Am having the same joint force as
Al&...&Am. But this equivalence is only established by
appealing to the workings of the rule ¢from A,B infer A&B?,
understood as involving two separate premisses (not one
conjunctive one), and it would be circular to appeal to the
equivalence to establish the dispensability of the rule. In-
finite or empty sets of premisses could not in any case be
treated in this way; nor do all calculi possess a conjunction.
Moreover, the equivalence between a set of sentences and their
conjunction is at best a partial one, for the conjunction, be-
ing a sentence itself, can be made a component of further sen-
tences where a set cannot: contrast ~(A1&A2) and ~{A1,A2}.

Our remark is that considerations exactly analogous to these

apply to multiple conclusions and disjunctions.

To see how multiple conclusions might invite the attention of
the logician, imagine first a student assigned the modest task
of devising axioms and rules for the propositional calculus.
He sees that the truth-table for conjunction can be translated
immediately into rules of inference, the stipulation that

A&B is true when A and B are true producing the rule (1)

¢from A,B infer A&B?, and similarly for (2) ¢from A&B infer A’
and (3) ¢from A&B infer B?. Not only are these rules justi-
fied by the truth-table, but they in turn dictate it: any
interpretation of conjunction that fits the rules must fit

the truth-table too, for by (1) A&B must be true if, and by
(2) and (3) only if, A and B are both true. Encouraged by
this start the student moves on to disjunction, where the

three ¢true” cells in the truth-table immediately produce the
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rules ¢from A infer AVB? and ¢from B infer AvB?, But when he
comes to the remaining one - the entry ¢false® when A and B
are both false - the recipe fails. Moreover, even if he does
find a complete set of rules, they cannot possibly dictate the
intended interpretation of disjunction. For it is easy to
show that all and only the tautologies and inferences of the
propositional calculus are valid in the truth-tables below,
where t stands for truth and fl’ f2 and f3 for subdivisions

of falsity; yet AVB can be true when A and B are both false.
Our student has heard of the difficulties of excluding non-
standard interpretations in the upper stories of mathematics;
now he finds the same thing in the basement. He sees too that,
if he could avail himself of it, the multiple-conclusion rule
¢from AVB infer A,B® would both translate the fourth cell of
the original truth-table and serve to dictate the intended
interpretation of disjunction in the same way as the rules

for conjunction do.

& |t f1 £, f3 vite £ £ f3 =

t |t £ £ f3 t |t t t ¢t t | £,
f1 f1 f1 f3 f3 f1 t f1 t f1 f1 f2
f2 f2 f3 f2 f3 f2 t t f2 fz f2 f1
f3 f3 f3 f3 f3 f3 t f1 f2 f3 f3 t

Alternatively, consider the ambitious project of defining
logic as advocated by Popper, Kneale and Hacking (for refer-
ences see the historical note at the end of Section 2,1). It
is proposed that a logical constant is one whose meaning can
be explained by conventions governing its inferential be-
haviour. If the conventions are not merely to fix but to
explain the meaning they must take the form of introduction
ruled, by which the behaviour of sentences containing the

constant can be derived inductively from the behaviour of
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their constituents. (For example, using + to symbolise con-
sequence and X for an arbitrary set of premisses, conjunction
can be introduced by the rules ¢if X F A and X F B then

X + A&B? and ¢if X,A + C or X,B F C then X,A&B F C?; but an
elimination rule like ¢if X + A&B then X F A? is ineligible,
as is an appeal to the transitivity of k.) Disjunction
causes no difficulty this time, but material implication
does. It turns out that the obvious introduction rules, ¢if
X,A F B then X F AoB? and ¢if X + A and X,B F C then

X,AoB F C?, characterise intuitionist, not classical impli-
cation; and to introduce the latter it is necessary to have
multiple conclusions. Indeed one would have to conclude that
classical logicians, like so many Monsieur Jourdains, have
been speaking multiple conclusions all their lives without

knowing it.

No branch of mathematical logic relies exclusively on actual
argumentative practice for its justification. We make use
of an informal multiple-conclusion proof in Section 18.3,
and note that the formalisation of a multiple-conclusion
metacalculus provides a nice method of proving compactness
(Theorem 13.1), but it can hardly be said that multiple-
conclusion proofs form part of the everyday repertoire of
mathematics. Perhaps the nearest one comes to them is in
proof by cases, where one argues ¢suppose Al «ss then B,

«ss » Suppose Am ... then B; but Alv...vAm, so B>, A dia-
grammatic representation of this argument exhibits the down-
wards branching which we shall see is typical of formalised
multiple-conclusion proofs:

A1VA2V...VAm

A1 Az eee Am
B B B



