Liquid-Phase Reaction Rate Constants

ET. Denisor

Liquid-Phase Reaction Rate Constants

E.T. Denisov

Institute of Chemical Physics Moscow, USSR

Translated from Russian by R. K. Johnston

Library of Congress Cataloging in Publication Data

Denisov, Evgenii Timofeevich.

Liquid-phase reaction rate constants.

Translation of Konstanty skorosti gomoliticheskikh zhidkofaznykh reaktsii. Includes bibliographies.

1. Chemical reaction, Rate of-Tables, etc. I. Title.

OD502.D4613

541'.39

ISBN 0-306-65160-2

The original Russian text, published by Nauka Press in Moscow in 1971, has been corrected by the author for the present edition. This translation is published under an agreement with Mezhdunarodnaya Kniga, the Soviet book export agency.

Константы скорости гомолитических жидкофазных реакций. Е.Т. Денисов

KONSTANTY SKOROSTI GOMOLITICHESKIKH ZHIDKOFAZNYKH REAKTSII E. T. Denisov

© 1974 IFI/Plenum Data Company A Division of Plenum Publishing Corporation 227 West 17th Street, New York, N.Y. 10011

United Kingdom edition published by Plenum Press, London A Division of Plenum Publishing Company, Ltd.
4a Lower John Street, London W1R 3PD, England

All rights reserved

No part of this publication may be reproduced in any form without written permission from the publisher

Printed in the United States of America

Liquid-Phase Reaction Rate Constants

PREFACE

The past 25 years in chemical kinetics have seen major advances in studying the mechanisms of complex chemical reactions, in particular free radical reactions. Many different methods have been developed for quantitative studies of elementary chemical reactions. Thousands of rate constants have been measured, for hundreds of diverse chemical reactions. It is becoming more and more difficult for the chemist to orient himself in the voluminous and rapidly growing literature of chemical reaction kinetics. This leads to major expenditures of time in searching out, collecting, and evaluating quantitative kinetic data; to unnecessary repetition (duplication) of research; and to a situation in which the rich material already accumulated in the field of chemical kinetics is very often not fully utilized in comparing, interpreting, and analyzing new experimental data. a pressing need for the creation of a series of handbooks on reaction rate constants. Such work was begun several years ago at the initiative of V. N. Kondrat'ev, and is now going forward under his direction at the Institute of Chemical Physics of the USSR Academy of Sciences.

This book is devoted to liquid-phase, homolytic reactions. Part One contains data on monomolecular reactions in which molecules decompose to form radicals, as well as data on bimolecular and trimolecular reactions that form free radicals. Also collected in Part One are data on the probability of radical escape into the bulk volume from a "cage" of solvent with various initiators, as well as values of the stoichiometric inhibition coefficients for various phenols and aromatic amines that are used as free radical acceptors. In Part Two, rate constants are collected for reactions of decomposition, substitution, and addition of radicals to molecules, as well as radical recombination and disproportionation reactions. Part Three contains data on ion--molecule reactions of

free radicals with metal ions and acid anions, reactions of ion-radicals and solvated electrons, and ionic oxidation-reduction reactions with electron transfer. In this book, rate constant values are presented along with a statement of the conditions and a brief characterization of the method of measurement.

I wish to express deep gratitude to Academician V. N. Kondrat'ev for having inspired me to this not easy but useful task, and for having aided me with counsel. The last chapter of this book was written by V. N. Berdnikov. For assistance in collecting the reaction rate constants, I thank A. L. Buchachenko, R. L. Vardanyan, S. S. Ivanchev, N. F. Kazanskaya, G. M. Nazin, A. A. Shteinman, and V. Ya. Shlyapintokh. I also wish to express gratitute to Z. A. Denisova for painstaking work in preparing the manuscript for publication.

E. T. Denisov

SYMBOLS

Reaction rate constant, expressed in sec⁻¹ for first-order reaction, liter/mole·sec for second-order reaction, and liter²/mole²·sec for third-order reaction

Equilibrium constant

Activation energy, kcal/mole

Temperature in degrees Celsius

Temperature in degrees Kelvin $\theta = 4.575 \text{ T}/1000$

Preexponential factor, with dimensionality corresponding to that of k for the reaction

Rate of chain reaction

Chain propagation rate constant in chain reaction

Rate constant for reaction between two radicals

Respectively, rate and rate constant for reaction of radical formation from molecules. If radicals R \cdot are formed at a rate W_i and are destroyed only by reaction with each other (rate constant k_t), then in the stationary regime $W_i = 2k_+[R^{\cdot}]^2$

Probability of escape of radicals into the bulk volume from a "cage" of solvent; if k is the rate constant for decomposition of initiator into two radicals, then $k_1 = 2$ ek

Concentration, mole/liter

xxiv SYMBOLS

InH Inhibitor or acceptor of free radicals

f Inhibition coefficient, equal to the number of radicals successively reacted with one molecule of inhibitor and conversion products from the inhibitor molecule

ABBREVIATIONS

The following abbreviations, which denote methods for measuring rate constants, are not listed in the original Russian text but have been compiled here for convenience. Abbreviations used here (in the English translation) are listed in the left-hand column; abbreviations used in the original Russian text are transliterated and listed in the right-hand column for reference.

	•	
Catal.	Ionic catalytic reactions	Kataliz
CINH	Inhibited chain reaction	TsING
CL	Chemiluminescence	KhL
CSM	Consumption of starting material	RIV
DP	Degree of polymerization	SP
EP	Emulsion polymerization	ÉP
EPR	Electron paramagnetic resonance	ÉPR
FM	Flash method	FM
ICA	Initial consumption of (radical)	NRA
	acceptor	
IIM	Intermittent illumination method	PO
IIP	Introduction of initiator	VIP
	fragments into polymer	
IM	Isotope method	IM
JM	Jet method	JM
KEPF	Kinetics of end product	KOKP
	formation	
KICR	Kinetics of initiated chain	KTsIR
	reaction	
Kin. Racem.	Kinetics of racemization	Kin. Ras.
KNP	[not identified]	KNP
KRAC	Kinetics of radical acceptor	KRAR
	consumption	
KRR	[not identified]	KRR
MCR	Method of competing reactions	MKR
NK	[not identified]	NK
NKR	Nonstationary kinetics of radical	NKR
	chain reaction	

NMR	Nuclear magnetic resonance	YaMR
NR	[not identified]	NR
Pol.	Polarographic method	Pol.
POL	[not identified]	POL
PR	Pulse radiolysis	IP
PSD	Photochemical space discontinuity	FPP
RICR	Rate of initiated chain reaction	STsIR
RRC	Products of radical recombination	PR
	in cage	
RUCR	Rate of unbranched chain reaction	STsNR
SUNR	[not identified]	SUNR
TIM	Tritium isotope method	ITM
TJ	Temperature jump	TS
TsINR	[not identified]	TsINR

Note: For a listing of abbreviations for names of ligands in metal complexes, see Chapter X, p. 482.

Preface		v
List of	Tables xii	i
Symbols	xxii	i
Abbrevia	ations	v
	PART ONE - REACTIONS OF MOLECULES	
CHAPTER	I. MONOMOLECULAR REACTIONS	1
1.	Methods for Measuring Rate Constants of Monomolecular Reactions	3
2.	Rate Constants for Decomposition of Peroxide Compounds	8
3.	Decomposition of Azo Compounds	0
4.	Decomposition at $C - C$, $N - N$, $N - C$, $N - O$, and C -Metal Bonds	0
5.	Decomposition of Iodobenzene Dichloride	1
6.	Correlation Equations	1
7.		L3
CHAPTER	II. BIMOLECULAR AND TRIMOLECULAR REACTIONS	37
1.	Methods for Measuring Rate Constants of Bimolecular Reactions	37

viii CONTENTS

2.	Diels-Alder Reaction	89
3.	Bimolecular Reactions with Peroxide Participation	89
4.	Oxidation-Reduction Reactions with Participation of ClO ₂ , O ₂ , and Cl ₂	91
5.	Reactions with Rupture of Metal-Carbon Bond	92
6.	Trimolecular Reactions	92
CHAPTER	III. THE CAGE EFFECT	109
1.	Questions of Theory	109
2.	Methods for Measuring Initiator Efficiency	111
3.	Initiator Efficiency	114
LITERAT	URE CITED (Part One)	135
P.	ART TWO - REACTIONS OF FREE ATOMS AND RADICALS	
CHAPTER	IV. METHODS FOR MEASURING RATE CONSTANTS OF RADICAL REACTIONS	157
1.	Measurement of Relative Rate Constants of Radical Reactions	157
2.	Measurement of Absolute Rate Constants of Reactions of Atoms and Radicals	164
CHAPTER	V. ISOMERIZATION AND DECOMPOSITION OF FREE RADICALS	173
1.	Isomerization of Free Radicals	173
2.	Decomposition of Free Radicals	174

CHAPTER	VI. RADICAL SUBSTITUTION REACTIONS	179
1.	Reactions of Atoms	179
2.	Reactions of Radicals Having Free Valence on Oxygen	181
3.	Reactions of Radicals Having Free Valence on Carbon	183
4.	Chain Transfer in Radical Polymerization	183
5.	Reactions of Radicals Having Free Valence on Nitrogen	184
6.	Correlation Equations for Radical Substitution Reactions	184
CHAPTER	VII. ADDITION REACTIONS OF ATOMS AND RADICALS	351
1.	Addition of Atoms and Radicals to Molecular Oxygen	351
2.	Addition at C = C Bond	351
3.	Addition to Aromatic Compounds	353
4.	Addition to Quinones, Carbonyl Compounds, Nitriles, and Nitro Compounds	354
CHAPTER	VIII. RECOMBINATION AND DISPROPORTION- ATION OF FREE ATOMS AND RADICALS	399
1.	Recombination of Atoms	399
2.	Disproportionation and Recombination of Alkyl and RO' Radicals	399
3.	Reactions between Peroxy Radicals	401
4.	Reactions of Radicals Having Free Valence on Nitrogen or Tin	402

x

5.	Reactions between Free Radicals of Different Types	402
CHAPTER	IX. EFFECT OF SOLVENT ON FREE RADICAL REACTIONS	427
1.	Solvent Viscosity	427
2.	Internal Pressure of Liquid	427
3.	Nonspecific Solvation	428
4.	Hydrogen Bond between Molecules	430
5.	Radical Hydrogen Bond	431
6.	Formation of π -Complexes	432
LITERAT	URE CITED (Part Two)	443
	PART THREE - IONIC HOMOLYTIC REACTIONS	
CHAPTER	X. OXIDATION-REDUCTION REACTIONS OF IONS WITH MOLECULES	47 9
1.	Oxidation of Organic Compounds by Variable-Valence Metal Ions	47 9
2.		
2.	Reaction of Variable-Valence Metal Ions with Oxygen, Peroxides, and Quinones	485
CHAPTER	Reaction of Variable-Valence Metal Ions with Oxygen, Peroxides, and Quinones	
9,000	Reaction of Variable-Valence Metal Ions with Oxygen, Peroxides, and Quinones	485

CHAPTER	XII. REACTIONS OF ION-RADICALS AND	
OIMI ILIK	SOLVATED ELECTRONS	561
1.	Reactions of Ion-Radicals	561
2.	Solvated Electron	561
CHAPTER	XIII. IONIC OXIDATION-REDUCTION REACTIONS .	607
1.	Methods for Measuring Reaction Rates for Electron Transfer from Ion to Ion	607
2.	Electron Exchange Reactions	608
3.	Oxidation-Reduction Reactions between Ions	608
LITERATU	URE CITED (Part Three)	735

LIST OF TABLES

CHAPTER I. MONOMOLECULAR REACTIONS

1	Rate Constants for Benzoyl Peroxide	
•	Decomposition	17
2	Decomposition of Benzoyl Peroxide in Various Solvents	18
3	Decomposition of Symmetrically Substituted Benzoyl Peroxides	19
3A	Decomposition of Unsymmetrically Substituted Benzoyl Peroxides and Phthaloyl Peroxide	21
4	Decomposition of Acetyl Peroxide in Various Solvents	23
5	Decomposition of Symmetrical Diacyl Peroxides, RCOOOCOR	24
6	Decomposition of Unsymmetrical Diacyl Peroxides, $R_1\text{COOOCOR}_2$	32
7	Decomposition of Peroxides, ROOR	35
8	Decomposition of Unsymmetrical Peroxides, R100R2	38
9	Decomposition of Peroxides, $(CH_3)_3COOCOR$.	40
10	Decomposition of Dibasic Peroxides	50
11	Decomposition of Hydroperoxides in	56

xiv LIST_OF TABLES

12	Decomposition of Azobisisobutyronitrile .	5 7
13	Decomposition of $R - N = N - R$	60
14	Decomposition of $R_1 - N = N - R_2$	66
15	Decomposition at C $-$ C Bond	70
16	Decomposition at N - N Bond	72
17	Decomposition of Compounds with Rupture of N $-$ C or C $-$ O Bond	74
18	Decomposition of Nitrogen Pentoxide	77
19	Decomposition of Nitro Compounds	78
20	Decomposition at C-Metal Bonds	80
21	Decomposition of XC ₆ H ₄ ICl ₂	81
22	Constants in Correlation Equations $\log k = \log k_0 + \rho \sigma \dots \dots$	82
23	Compensation Effect for Monomolecular Decomposition Reactions	83
24	Volume Change ΔV≠ in Decomposition of Molecules	84
25	Range of Variation of k for Decomposition of Initiators in Various Solvents	85
CHAPTER	II. BIMOLECULAR AND TRIMOLECULAR REACTIONS	
26	Dimerization of Unsaturated Compounds	93
27	Volume Change in Diels-Alder Reaction	94
28	Reactions of Amines with Peroxides	95
29	Reaction ROOH + R'H \longrightarrow Free Radicals	99
30	Reactions of Hydroperoxides 2 ROOH K Complex Free Radicals	100