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Preface

The purpose of this book is to highlight the problems associated with the produc-
tion of chiral compounds on a commercial scale. With the movement by pharma-
ceutical companies to develop single enantiomers as drug candidates, the focus
has turned to problems associated with this subclass of organic synthesis. The
major classes of natural products are also discussed since the stereogenic center
can be derived from nature through the use of ‘‘chiral pool’’ starting materials.

Despite the explosion of asymmetric methods over the past 20 years, very
few can be performed at scale due to limitations in cost, thermodynamics, or
equipment. The major reactions that have been used are covered in this volume.
Resolution, whether chemical or enzymatic, still holds a key position. This is
highlighted by a short discussion of the best-selling compounds of 1996. Many
are obtained either by resolution or by fermentation methods.

The most mature chemical method is asymmetric reductions and hydroge-
nations. This is highlighted by chapters on the uses of new ligands for hydrogena-
tion and hydride-reducing agents. Although we have made considerable advances
in this area, the general catalyst is still elusive. The struggle goes on to identify the
ultimate hydrogenation catalyst; for example, the use of enzymes and biological
systems for the production of chiral compounds continues to increase at an almost
explosive rate. Now that we have learned to manipulate nature's catalysts, this
area will continue to grow and become more important.

The chapter on amino acid derivatives is the result of a considerable amount
of research on the new methods for the preparation of unnatural amino acids and
derivatives at scale. Their findings carry over into other classes of compounds,
but the principles are highlighted exclusively within this field.

The chapters are grouped by topic. The first three are an introduction and
discussion of the requirements of sourcing chiral intermediates. Another chapter
presents an overview of the current large-volume chiral compounds and how they
are synthesized.

The next three chapters discuss how the key subclasses of the chiral pool
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are obtained. The amino acid chapter is specific to the chiral pool materials as
there are more examples of amino acid syntheses contained within other chapters.

The next eight chapters cover methods that can be used to introduce or
control stereogenic centers. In some cases, such as asymmetric hydrogenations,
the approach is well established and has been employed for the large-scale synthe-
sis of a number of commercially important compounds. In other cases, such as
pericyclic reactions, the potential exists, but has not yet been used. One chapter
covers enzymatic methods, an area that seems to be becoming more important
as we learn how to manipulate enzymes by allowing them to catalyze new reac-
tions or take new substrates. The rush to market for pharmaceutical companies
is forcing the chemical development time to be minimized. This is leading to
large-scale usage of chiral auxiliaries.

The chapter on resolutions has a number of examples as illustrations show-
ing that this methodology is still important to obtain chiral compounds. Although,
ultimately, it may not be the most cost-effective method, it can provide material
in a rapid manner, and can usually be scaled up. The introduction of large-scale
chromatographic techniques, as well as the availability of a large number of en-
zymes that can be used to perform reactions on only one enantiomer, will ensure
that this approach remains a useful tool in the future.

The remaining chapters discuss various examples and topics to augment
other chapters and provide a perspective of the different methods available.

I would like to thank all the authors who contributed to this book and who
have worked on it with me for the past few years. I would especially like to
thank my colleagues at NSC Technologies for writing a number of the chapters
and for having supplied numerous suggestions and ideas. Not only have they
developed new methodology, but they have also proceeded to use it at scale
within a very short timeframe. They continue to inspire me, as do many others
working in the arena of asymmetric synthetic methodology.

David J. Ager
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Introduction

DaviD J. AGER
NSC Technologies, Mount Prospect, lllinois

This book discusses various aspects of chiral fine chemicals, including their syn-
thesis and uses at scale. There is an increasing awareness of the importance of
chirality in biological molecules, as the two enantiomers can sometimes have
different effects. [1-4].

In many respects, chiral compounds have been regarded as special entities
within the fine chemical community. As we will see, the possession of chirality
does not, in many respects, make the compound significantly more expensive to
obtain. Methods for the preparation of optically active compounds have been
known for well over 100 years (many based on biological processes). The basic
chemistry to a substrate on which an asymmetric transformation is then per-
formed can offer more challenges in terms of chemistry and cost optimization
than the ‘‘exalted’’ asymmetric step.

I.I. CHIRALITY

The presence of a stereogenic center within a molecule can give rise to chirality.
Unless a chemist performs an asymmetric synthesis, equal amounts of the two
antipodes will be produced. To separate these, or to perform an asymmetric syn-
thesis, a chiral agent has to be employed. This can increase the degree of complex-
ity in obtaining a chiral compound in a pure form. However, nature has been
kind and does provide some chiral compounds in relatively large amounts. Chiral-
ity does provide an additional problem that is sometimes not appreciated by those
who work outside of the field: analysis of the final compound is often not a trivial
undertaking.
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1.2. CHIRAL POOL

Nature has provided a wide variety of chiral materials, some in great abundance.
The functionality ranges from amino acids to carbohydrates to terpenes (Chapters
4-6). All of these classes of compounds are discussed in this book. Despite the
breadth of functionality available from natural sources, very few compounds are
available in optically pure form at large scale. Thus, incorporation of a *‘chiral
pool’’ material into a synthesis can result in a multistep sequence. However, with
the advent of synthetic methods that can be used at scale, new compounds are
being added to the chiral pool, although they are only available in bulk by synthe-
sis. When a chiral pool material is available at large scale, it is usually inexpen-
sive. An example is provided by L-aspartic acid (Chapter 16), where the chiral
material can be cheaper than the racemate (see also Chapter 15).

How some of these chiral pool materials have been incorporated into syn-
thesis of biologically active compounds is illustrated in this book. In addition,
chiral pool materials are often incorporated, albeit in derivatized form, into chiral
reagents and ligands that allow for the transfer of chirality from a natural source
into the desired target molecule.

1.3. CHIRAL REAGENTS

Chiral reagents allow for the transfer of chirality from the reagent to the prochiral
substrate. Almost all of these reactions involve the conversion of an sp? carbon
to an sp® center. For example, reductions of carbonyl compounds (Chapter 11),
asymmetric hydrogenations (Chapter 9), and asymmetric oxidations of alkenes
(Chapter 12) are all of this type. The reagents can be catalytic for the transforma-
tion they bring about, or stoichiometric. The former is usually preferred because
it allows for chiral multiplication during the reaction—the original stereogenic
center gives rise to many product stereocenters. This allows for the cost of an
expensive catalyst to be spread over a large number of product molecules.

1.4. CHIRAL CATALYSTS

Considerable resources are being expended in the quest for new asymmetric cata-
lysts for a wide variety of reactions (Chapter 9). In many cases, these catalysts
are based on transition metals, where the ligands provide the chiral environment.
However, as our understanding of biotransformations increases, coupled with our
ability to produce mutant enzymes at scale, biocatalysts are beginning to become
key components of our asymmetric synthetic tool box (Chapters 13 and 15).
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1.4.1. Chemical Catalysts

The development of transition metal catalysts for the asymmetric reduction of
functionalized alkenes allowed synthetic chemists to perform reactions with a
stereochemical fidelity approaching that of nature (Chapter 9). We now have a
number of reactions at our disposal that can be performed with chemical catalysts,
and the number continues to grow. However, there are still problems associated
with this approach because many catalysts have specific substrates requirements,
often involving just one alkene isomer of the substrate. The chiral multiplication
associated with use of a chiral catalyst often makes for attractive economical
advantages. However, the discovery and development of a chemical catalyst to
perform a specific transformation is often tedious, time consuming, and expen-
sive. There are many reports of chiral ligands in the literature, for example, to
perform asymmetric hydrogenation, yet very few have been used at scale (Chap-
ter 9). This highlights the problem that there are few catalysts that can be consid-
ered general. As previously mentioned, the preparation of the substrate is often
the expensive part of a sequence, especially with catalysts that have high turnover
numbers and can be recycled.

1.4.2. Biological Catalysts

Biological catalysts have been used for asymmetric transformations in specific -
cases for a considerable period of time, excluding the chiral pool materials. How-
ever, until recently, the emphasis has been on resolutions with enzymes rather
than asymmetric transformations (Chapter 13). With our increasing ability to pro-
duce mutant enzymes that have different or broad-spectrum activities compared
with the wild types, the development of biological catalysts is poised for major
development. In addition to high stereospecificities, an organism can be per-
suaded to perform more than one step in the overall reaction sequence, and may
even make the substrate (Chapter 15).

Unlike the design of a chemical catalyst, which has to be semi-empirical
in nature and is therefore very difficult to apply to a completely different transfor-
mation, screening for an enzyme that performs a similar reaction is relatively
straightforward and often gives the necessary lead for the development of a potent
biological catalyst. The use of molecular biology, site-specific mutagenesis, and

-enzymology all contribute to the development of such a catalyst. This approach
is often ignored because these methods are outside of traditional chemical meth-
odologies.

There are a large number of reports of abzymes, or catalytic antibodies, in
the literature [5—10]. Although catalysis has been observed in a large number of
examples, the problems associated with the production of large amounts of ab-
zymes, compounded by the low turnover numbers often observed, makes this



